Simultaneous Statistical Modeling of Several Large Covariance Matrices
多个大协方差矩阵的同时统计建模
基本信息
- 批准号:0307055
- 负责人:
- 金额:$ 8.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractPI: Mohsen Pourahmadi, DMS-0307055TITLE: Simultaneous Statistical Modeling of Several Large Covariance MatricesThis research focuses on the development of a three-stage statistical model-fitting process consisting of model formulation, estimation and diagnostics for contemporaneous covariance matrices of large multivariate responses arising, for example, in business and economics, epidemiology, environmental monitoring and global change, biotechnology and manufacturing (quality control). Correlation and covariance matrices and their spectral (eigenvalue) decomposition provide the basis for all classical multivariate techniques. For temporal correlations, however, the Cholesky decomposition lies at the core of most time series techniques. A growing body of work in step-down procedures in multivariate statistics and multivariate stochastic volatility models implicitly rely on the Cholesky decomposition or view each long random vactor as a "time series", for a given arrangement of the variables. The proposed work intends to make explicit and reveal the full potential of using Cholesky decomposition or time series techniques in modeling contemporaneous covariance matrices. It includes developing parsimonious models, their estimates and asymptotic properties, their practical implementation and uses, with an eye to guaranteeing the positive-definiteness of the covariance matrices at each stage of an iterative procedure used to compute the maximum likelihood estimates of the parameters. A major difficulty of the implementation for high-dimensional unordered vectors is the large number of possible arrangements of the variables. The methods and tools to be employed include: generalized linear models, factor analysis and random effects models, time-series model fitting process, maximum likelihood and Bayesian estimation and numerical linear algebra. The proposed research has the potential of elevating the Cholesky decomposition as a bona fide tool for modeling temporal and contemporaneous correlations and hence connecting (unifying) disparate areas like time series analysis, factor analysis and linear structural models, graphical models and Bayesian covariance modeling.Advances in technology and data collection have enabled researchers to record measurements on many characteristics of systems over finer units of time. The research proposed is motivated by statistical problems arising in settings where large amounts of multivariate data are available and the focus is on prediction, control, classification, clustering and data mining. The reliability or error rates of these tasks invariably hinge on the precise estimation of correlations among many variables and better understanding of the dynamics of large covariance matrices. The goal of the proposal is to provide a systematic and efficient method for analyzing high-dimensional data through modeling of the relevant covariance matrices. The proposal intends to use classical and recent statistical estimation and large-scale computing. Results obtained by the proposed research will have applications in diverse areas outlined above, however, particular attention will be paid to their potential use in understanding intelligence in machines and brains. A student will participate in the proposed research during summers.
摘要PI:Mohsen Pourahmadi,DMS-0307055职务:几个大协方差矩阵的同时统计建模本研究侧重于开发一个三阶段的统计模型拟合过程,包括模型制定,估计和诊断,用于商业和经济,流行病学,环境监测和全球变化等领域的大多元响应的同期协方差矩阵,生物技术和制造业(质量控制)。相关和协方差矩阵及其谱(特征值)分解为所有经典的多变量技术提供了基础。然而,对于时间相关性,Cholesky分解是大多数时间序列技术的核心。在多元统计和多元随机波动率模型的逐步下降过程中,越来越多的工作隐含地依赖于Cholesky分解或将每个长随机向量视为“时间序列”,对于给定的变量安排。拟议的工作旨在明确和揭示使用Cholesky分解或时间序列技术建模同期协方差矩阵的全部潜力。它包括开发简约模型,其估计和渐近性质,其实际实施和使用,着眼于保证在用于计算参数的最大似然估计的迭代过程的每个阶段的协方差矩阵的正定性。实现高维无序向量的一个主要困难是变量的大量可能排列。将采用的方法和工具包括:广义线性模型、因素分析和随机效应模型、时间序列模型拟合过程、最大似然和贝叶斯估计以及数值线性代数。拟议的研究有可能提升Cholesky分解作为一个真正的工具建模时间和同期的相关性,从而连接(统一)不同的领域,如时间序列分析,因子分析和线性结构模型,图形模型和贝叶斯协方差建模技术和数据收集的进步使研究人员能够在更精细的时间单位内记录对系统许多特性的测量。提出的研究的动机是在大量的多变量数据的设置中出现的统计问题,重点是预测,控制,分类,聚类和数据挖掘。这些任务的可靠性或错误率总是取决于许多变量之间的相关性的精确估计和更好地理解大型协方差矩阵的动态。该提案的目标是通过对相关协方差矩阵进行建模,为分析高维数据提供一种系统而有效的方法。该提案打算使用经典和最近的统计估计和大规模计算。拟议的研究所获得的结果将在上述各个领域中得到应用,但是,将特别关注它们在理解机器和大脑智能方面的潜在用途。一名学生将在夏季参加拟议的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohsen Pourahmadi其他文献
Means of operators and RKHS
运营商和 RKHS 的手段
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Akira Yamada - 通讯作者:
Akira Yamada
多重格子法による輸送方程式の定常問題に対する差分法の高速解法
稳态输运方程问题有限差分法的多重网格快速求解方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Yoshimasa Nakamura;藤原宏志 - 通讯作者:
藤原宏志
The Microcosm Principle and Compositionality of GSOS-Based Component Calculi
基于GSOS的分量演算的微观原理和组合性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Ichiro Hasuo - 通讯作者:
Ichiro Hasuo
行列値関数のHardy空間と多次元予測理論
矩阵值函数的Hardy空间与多维预测理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi - 通讯作者:
Mohsen Pourahmadi
多次元の予測理論的手法の最近の進展について
多维预测理论方法的最新进展
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi - 通讯作者:
Mohsen Pourahmadi
Mohsen Pourahmadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohsen Pourahmadi', 18)}}的其他基金
Equilibrium in Multivariate Nonstationary Time Series
多元非平稳时间序列中的均衡
- 批准号:
1612984 - 财政年份:2016
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Sparse Graphical Models for Multivariate Time series
多元时间序列的稀疏图形模型
- 批准号:
1309586 - 财政年份:2013
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Generalized Linear Models for Large Correlation Matrices Via Partial Autocorrelations
通过偏自相关的大相关矩阵的广义线性模型
- 批准号:
0906252 - 财政年份:2009
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Model-based Classification of Longitudinal and Functional Data
基于模型的纵向和功能数据分类
- 批准号:
0505696 - 财政年份:2005
- 资助金额:
$ 8.21万 - 项目类别:
Continuing Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9707721 - 财政年份:1997
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Mathematical Sciences: Autoregressive Representation of Nonstationary Processes
数学科学:非平稳过程的自回归表示
- 批准号:
8601858 - 财政年份:1986
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Mathematical Sciences: Cesaro Summability of the Linear Predictor of a Stationary Time Series
数学科学:平稳时间序列线性预测器的塞萨罗可和性
- 批准号:
8301240 - 财政年份:1983
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
- 批准号:
495410 - 财政年份:2023
- 资助金额:
$ 8.21万 - 项目类别:
Study of Human Statistical Biases on Unsupervised Parsing and Language Modeling
无监督句法分析和语言建模的人类统计偏差研究
- 批准号:
23KJ0565 - 财政年份:2023
- 资助金额:
$ 8.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Statistical Modeling and Inference for Network Data in Modern Applications
现代应用中网络数据的统计建模和推理
- 批准号:
2326893 - 财政年份:2023
- 资助金额:
$ 8.21万 - 项目类别:
Continuing Grant
ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
- 批准号:
2220231 - 财政年份:2023
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Statistical modeling via functional data analysis and its application to various fields
通过功能数据分析进行统计建模及其在各个领域的应用
- 批准号:
23K11005 - 财政年份:2023
- 资助金额:
$ 8.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SCH: Statistical Foundation and Predictive Modeling for Personalized Diabetes Management: Continuous Glucose Monitoring (CGM), Electronic Health Records (EHR), and Biobanks
SCH:个性化糖尿病管理的统计基础和预测模型:连续血糖监测 (CGM)、电子健康记录 (EHR) 和生物样本库
- 批准号:
2205441 - 财政年份:2022
- 资助金额:
$ 8.21万 - 项目类别:
Standard Grant
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
- 批准号:
RGPIN-2018-04462 - 财政年份:2022
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
- 批准号:
10445698 - 财政年份:2022
- 资助金额:
$ 8.21万 - 项目类别:
Statistical methods for longitudinal integrated mechanistic modeling of multiview data
多视图数据纵向综合机制建模的统计方法
- 批准号:
10685565 - 财政年份:2022
- 资助金额:
$ 8.21万 - 项目类别: