Sparse Graphical Models for Multivariate Time series
多元时间序列的稀疏图形模型
基本信息
- 批准号:1309586
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to develop sparse graphical models in the spectral domain to help visualize connectivity (correlation) among neurophysiological signals recorded as a multivariate time series. Partial coherence, the spectral-domain analogue of the partial correlation, will be used as a measure of functional connectivity which identifies the frequency region that drives the correlation between any two component series adjusted for the linear effects of the others. In the neuroscience applications, the vertices of a graph may represent different voxels while an edge between two vertices reflect a direct connection between the signals at the two voxels. The absence of an edge is indicated by a null partial coherence for the two signals, and the ability to detect it is the key in the construction of a meaningful graph. At present, partial coherence is computed by estimating the spectral density matrix first and then inverting it. This classical approach works well so long as the dimension of the series or the number of voxels is small relative to the length of the series. Serious computational complexity and statistical stability problems arise when estimating the partial coherences for high-dimensional fMRI time series. The stability and complexity are invariably influenced by factors such as the degree of spectral smoothing and size of the matrix to be inverted. The goal of this research is to completely avoid these issues by estimating the inverse spectral density matrix directly using the penalized normal likelihood in analogy with the recent developments in sparse estimation of Gaussian graphical models leading to the fast graphical lasso methodology. It will exploit an under-utilized fact that the spectral density matrix of a multivariate stationary process at each frequency is actually the covariance matrix of a random vector of the same dimension with complex entries.Spectral-domain methodologies are commonly used in the analysis of multivariate time series data arising from biological, physical and engineering sciences. This research elevates the general concepts and techniques of Gaussian graphical models from the standard multivariate data to the multivariate time series setup in the spectral domain, and develops graphical lasso methodology for structured covariance (precision) matrices. The proposed work is interdisciplinary in nature with immediate applications to the analysis of neuroscience data. Its focus on high-dimensional data analysis has immediate impacts on settings where multivariate time series data are collected such as in financial markets, epidemiology, environmental monitoring and global change. A graduate student will be involved in the research project, the results will be incorporated in graduate courses and presented in seminars and workshops accessible to researchers outside the field of statistics.
本研究的目的是在谱域中开发稀疏图形模型,以帮助可视化记录为多变量时间序列的神经生理信号之间的连接性(相关性)。部分相干性,部分相关性的频谱域模拟,将被用作功能连接性的测量,其识别驱动任何两个分量系列之间的相关性的频率区域,该频率区域针对其他分量系列的线性效应进行调整。在神经科学应用中,图的顶点可以表示不同的体素,而两个顶点之间的边反映两个体素处的信号之间的直接连接。边缘的缺失由两个信号的零部分相干性指示,并且检测它的能力是构造有意义的图的关键。目前,部分相干性的计算方法是先估计谱密度矩阵,然后求其逆,只要序列的维数或体素数相对于序列的长度较小,这种经典方法就能很好地工作。在估计高维fMRI时间序列的部分相干性时,会出现严重的计算复杂性和统计稳定性问题。稳定性和复杂性总是受到诸如谱平滑程度和待求逆矩阵的大小等因素的影响。本研究的目标是完全避免这些问题,估计逆谱密度矩阵直接使用惩罚正常的似然类比高斯图形模型的稀疏估计的快速图形套索方法的最新发展。它将利用一个未被充分利用的事实,即在每个频率的多元平稳过程的谱密度矩阵实际上是一个随机向量的协方差矩阵的相同维度的复杂entries.Spectral-domain的方法是常用的多元时间序列数据的分析中产生的生物,物理和工程科学。本研究将高斯图模型的一般概念和技术从标准多元数据提升到谱域的多元时间序列设置,并开发了结构协方差(精度)矩阵的图形套索方法。拟议的工作是跨学科的性质,直接应用于神经科学数据的分析。它对高维数据分析的关注对收集多变量时间序列数据的环境产生了直接影响,例如金融市场,流行病学,环境监测和全球变化。一名研究生将参与研究项目,研究结果将纳入研究生课程,并在统计领域以外的研究人员可以参加的研讨会和讲习班上提出。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohsen Pourahmadi其他文献
Means of operators and RKHS
运营商和 RKHS 的手段
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Akira Yamada - 通讯作者:
Akira Yamada
多重格子法による輸送方程式の定常問題に対する差分法の高速解法
稳态输运方程问题有限差分法的多重网格快速求解方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Yoshimasa Nakamura;藤原宏志 - 通讯作者:
藤原宏志
The Microcosm Principle and Compositionality of GSOS-Based Component Calculi
基于GSOS的分量演算的微观原理和组合性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi;Ichiro Hasuo - 通讯作者:
Ichiro Hasuo
行列値関数のHardy空間と多次元予測理論
矩阵值函数的Hardy空间与多维预测理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi - 通讯作者:
Mohsen Pourahmadi
多次元の予測理論的手法の最近の進展について
多维预测理论方法的最新进展
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
井上昭彦;笠原雪夫;Mohsen Pourahmadi - 通讯作者:
Mohsen Pourahmadi
Mohsen Pourahmadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohsen Pourahmadi', 18)}}的其他基金
Equilibrium in Multivariate Nonstationary Time Series
多元非平稳时间序列中的均衡
- 批准号:
1612984 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Generalized Linear Models for Large Correlation Matrices Via Partial Autocorrelations
通过偏自相关的大相关矩阵的广义线性模型
- 批准号:
0906252 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Model-based Classification of Longitudinal and Functional Data
基于模型的纵向和功能数据分类
- 批准号:
0505696 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Simultaneous Statistical Modeling of Several Large Covariance Matrices
多个大协方差矩阵的同时统计建模
- 批准号:
0307055 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
- 批准号:
9707721 - 财政年份:1997
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Autoregressive Representation of Nonstationary Processes
数学科学:非平稳过程的自回归表示
- 批准号:
8601858 - 财政年份:1986
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Cesaro Summability of the Linear Predictor of a Stationary Time Series
数学科学:平稳时间序列线性预测器的塞萨罗可和性
- 批准号:
8301240 - 财政年份:1983
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Visualization of causality: development and application of graphical models based on mechanisms
因果关系可视化:基于机制的图模型的开发与应用
- 批准号:
23K09740 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CBMS Conference: Foundations of Causal Graphical Models and Structure Discovery
CBMS 会议:因果图模型和结构发现的基础
- 批准号:
2227849 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Personalization of graphical models using multi-omics data for subtype discovery and prognosis
使用多组学数据个性化图形模型以进行亚型发现和预后
- 批准号:
10743786 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
- 批准号:
2210675 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Integrating high-throughput histology with systems genetics through causal graphical models
通过因果图模型将高通量组织学与系统遗传学相结合
- 批准号:
10366570 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Graphical causal models for random networks
随机网络的图形因果模型
- 批准号:
EP/W015684/1 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Illuminating the dark metabolome via deep learning and probabilistic graphical models
通过深度学习和概率图模型照亮黑暗代谢组
- 批准号:
544268-2020 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Postgraduate Scholarships - Doctoral