Algebraic, Geometric, and Asymptotic Properties of Branch Groups
支群的代数、几何和渐近性质
基本信息
- 批准号:0308985
- 负责人:
- 金额:$ 37.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0308985Grigorchuk, RostislavAbstractTitle: Algebraic, Geometric, and Asymptotic Properties of Branch GroupsThis project will focus on properties of branch groups.Branch groups are abstract mathematical objects that play an important role in solving major problems on the intersection of different parts of mathematics, such as Algebra, Number Theory, Analysis, Geometry and Probability Theory. The proposer will study these groups and their relation to a number of important and long-standing problems in modern mathematics, such as the Burnside and Milnor Problems in Group Theory, Atiyah Conjecture in Topology, Kadison-Kaplansky Conjecture in Functional Analysis. The results obtained in this project have useful applications in Cybernetics and Computer Science, as well as Cryptography and Theory of Algorithms.Combinatorial Group Theory is one of the most rapidly developing parts of modern mathematics. Starting with works by Poincare and Klein this area received contribution from some of the most prominent mathematicians of the twentieth century, such as von Neumann, Milnor and others. In recent decades Combinatorial Group Theory became an object of especially intensive research due to newly found connections with Statistical Physics, Quantum Chaos Theory and Computer Science. New promising directions of mathematical research have been developped, one of them being the theory of branch groups. This theory has strong connections to several mainstream open problems in modern mathematics. Tremendous progress acheived in recent years indicates that the exploration of these connections leads to most fruitful ideas and results.
摘要题目:分支群的代数、几何和渐近性质本课题主要研究分支群的性质。分支群是抽象的数学对象,在解决数学不同部分交叉的重大问题方面起着重要作用,如代数、数论、分析、几何和概率论。申请者将研究这些群及其与现代数学中一些重要和长期存在的问题的关系,如群论中的Burnside和Milnor问题,拓扑学中的Atiyah猜想,泛函分析中的kadson - kaplansky猜想。所得结果在控制论、计算机科学、密码学和算法理论等领域具有重要的应用价值。组合群论是现代数学中发展最为迅速的部分之一。从庞加莱和克莱因的作品开始,这一领域得到了20世纪一些最杰出的数学家的贡献,如冯·诺伊曼、米尔诺等人。近几十年来,由于与统计物理、量子混沌理论和计算机科学的新联系,组合群论成为一个特别深入研究的对象。数学研究的新方向被开发出来,其中之一就是分支群理论。这个理论与现代数学中的几个主流开放问题有很强的联系。近年来取得的巨大进展表明,对这些联系的探索带来了最富有成效的想法和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rostislav Grigorchuk其他文献
Décompositions paradoxales des groupes
- DOI:
10.1016/s0764-4442(98)80004-9 - 发表时间:
1998-07-01 - 期刊:
- 影响因子:
- 作者:
Tullio Ceccherini-Silberstein;Rostislav Grigorchuk;Pierre de la Harpe - 通讯作者:
Pierre de la Harpe
On diagonal actions of branch groups and the corresponding characters
- DOI:
10.1016/j.jfa.2018.02.016 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:
- 作者:
Artem Dudko;Rostislav Grigorchuk - 通讯作者:
Rostislav Grigorchuk
Subshifts with leading sequences, uniformity of cocycles and spectra of Schreier graphs
- DOI:
10.1016/j.aim.2022.108550 - 发表时间:
2022-10-08 - 期刊:
- 影响因子:1.500
- 作者:
Rostislav Grigorchuk;Daniel Lenz;Tatiana Nagnibeda;Daniel Sell - 通讯作者:
Daniel Sell
Ergodic decomposition of group actions on rooted trees
- DOI:
10.1134/s0081543816010065 - 发表时间:
2016-05-14 - 期刊:
- 影响因子:0.400
- 作者:
Rostislav Grigorchuk;Dmytro Savchuk - 通讯作者:
Dmytro Savchuk
Rostislav Grigorchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rostislav Grigorchuk', 18)}}的其他基金
Algebraic, combinatorial, spectral and algorithmic properties of groups generated by finite automata
有限自动机生成的群的代数、组合、谱和算法特性
- 批准号:
0600975 - 财政年份:2006
- 资助金额:
$ 37.54万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
- 批准号:
2311110 - 财政年份:2023
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
- 批准号:
2305038 - 财政年份:2023
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2022-03483 - 财政年份:2022
- 资助金额:
$ 37.54万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2021
- 资助金额:
$ 37.54万 - 项目类别:
Discovery Grants Program - Individual
Geometric and Asymptotic Group Theory with Applications 2020
几何和渐近群理论及其应用 2020
- 批准号:
1953998 - 财政年份:2020
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2016-06110 - 财政年份:2020
- 资助金额:
$ 37.54万 - 项目类别:
Discovery Grants Program - Individual
International Conference on Geometric and Asymptotic Group Theory with Applications
几何和渐近群理论及其应用国际会议
- 批准号:
1928295 - 财政年份:2019
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
Systematical geometric analysis and asymptotic analysis for evolution equations
演化方程的系统几何分析和渐近分析
- 批准号:
19H05599 - 财政年份:2019
- 资助金额:
$ 37.54万 - 项目类别:
Grant-in-Aid for Scientific Research (S)