Function Theory of Several Complex Variables
多复变量函数论
基本信息
- 批准号:2247151
- 负责人:
- 金额:$ 36.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns the understanding of complex numbers and complex functions. Complex numbers and functions of complex variables are indispensable tools in many areas of mathematics and have deep applications to other areas of science and engineering. The solutions of many problems in applied sciences could ultimately depend on improvements in complex analytic tools. Results of the research to be carried out in this project may lead to the discovery of novel properties of complex-valued functions. This project also has significant educational and training aspects. Graduate students, undergraduate students, and junior researchers will be actively involved in the project. Also, the principal investigator will continue to organize international conferences on several complex variables and complex geometry, bringing together many mathematicians to discuss their research and teaching. This project involves work on a number of problems in the broad area of several complex variables and Cauchy-Riemann geometry. The problems under consideration also have connections to other mathematical fields, including differential geometry, complex singularity theory, algebraic geometry, and classical dynamics. More specifically, the PI will continue his investigation of rigidity problems in several complex variables, along with their applications and interactions with complex geometry and algebraic geometry. He will continue his research on the equivalence problem in several complex variables, pursue his ongoing study of the complex structure of the holomorphic hull of a real submanifold in a complex space, and further his investigations on the existence and regularity problem for Levi-flat submanifolds bounded by real submanifolds with CR singularities. In addition, he will continue his work on boundary invariants of weakly pseudo-convex domains, finite type conditions and the Bloom conjecture, and canonical metrics on Stein spaces with isolated normal singularities. Finally, he will continue his study on the boundary unique continuation problems for holomorphic functions and his work on transversality problems in the Cauchy-Riemann setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及对复数和复函数的理解。复数和复变量函数是许多数学领域不可缺少的工具,在其他科学和工程领域也有广泛的应用。应用科学中许多问题的解决最终可能依赖于复杂分析工具的改进。在这个项目中进行的研究结果可能会导致发现复值函数的新性质。该项目还具有重要的教育和培训方面。研究生、本科生和初级研究人员将积极参与该项目。此外,首席研究员将继续组织一些复杂变量和复杂几何的国际会议,将许多数学家聚集在一起讨论他们的研究和教学。该项目涉及在几个复杂变量和柯西-黎曼几何的广泛领域的许多问题的工作。所考虑的问题也与其他数学领域有联系,包括微分几何、复杂奇点理论、代数几何和经典动力学。更具体地说,PI将继续研究几个复杂变量的刚性问题,以及它们与复杂几何和代数几何的应用和相互作用。他将继续研究几个复变量的等价问题,继续研究复空间中实子流形的全纯壳的复结构,并进一步研究以CR奇点的实子流形为界的列维平面子流形的存在性和正则性问题。此外,他将继续研究弱伪凸域的边界不变量,有限型条件和Bloom猜想,以及具有孤立正态奇点的Stein空间上的规范度量。最后,他将继续研究全纯函数的边界唯一延拓问题和Cauchy-Riemann环境下的横向性问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojun Huang其他文献
Extension of multivalued holomorphic functions on a Stein space
Stein 空间上多值全纯函数的扩展
- DOI:
10.1007/s00208-022-02517-2 - 发表时间:
2022-11 - 期刊:
- 影响因子:0
- 作者:
Xiaojun Huang;Xiaoshan Li - 通讯作者:
Xiaoshan Li
Normality of meromorphic functions with multiple zeros and shared values
- DOI:
10.1016/s0022-247x(02)00532-2 - 发表时间:
2003 - 期刊:
- 影响因子:1.3
- 作者:
Xiaojun Huang - 通讯作者:
Xiaojun Huang
Comparable outcomes of partially matched related and matchedbr /related allogeneic hematopoietic cell transplantation followingbr /reduced-intensity conditioning in adult patients with Philadelphiabr /chromosome-negative acute lymp
费城染色体阴性急性淋巴瘤成人患者低强度调节后部分匹配相关和匹配相关同种异体造血细胞移植的结果可比较
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
Depei Wu;Huisheng Ai;Xiaojun Huang;Yue Han;Yang Xu;Aining Sun;Qian Wu;Xiaowen Tang;Zhengzheng Fu - 通讯作者:
Zhengzheng Fu
Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins
用于鉴定和富集蛋白质中反应性精氨酸残基的精氨酸选择性化学标记方法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Maheshika S K Wanigasekara;Xiaojun Huang;J. K. Chakrabarty;A. Bugarin;S. Chowdhury - 通讯作者:
S. Chowdhury
Tunable quintuple-band polarization-insensitive wide-angle metamaterial absorber with single-layered graphene in terahertz range
太赫兹范围内单层石墨烯可调谐五波段偏振不敏感广角超材料吸收器
- DOI:
10.1088/2053-1591/ab196b - 发表时间:
2019-06 - 期刊:
- 影响因子:2.3
- 作者:
Yujun Li;Xiaojun Huang;Siqi Huang;Yanfei Zhou;Jiong Wu;Chengwen Wang;Zhaoyang Shen;Helin Yang - 通讯作者:
Helin Yang
Xiaojun Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojun Huang', 18)}}的其他基金
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
2000050 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1665412 - 财政年份:2017
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1363418 - 财政年份:2014
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1101481 - 财政年份:2011
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
International Conference on Several Complex Variables, Complex Geometry and Partial Differential Equations
多复变量、复几何与偏微分方程国际会议
- 批准号:
0901662 - 财政年份:2009
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
0801056 - 财政年份:2008
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
0500626 - 财政年份:2005
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Function Theory in Several Complex Variables
多复变量的函数论
- 批准号:
0200689 - 财政年份:2002
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Function Theory in Several Complex Variables
多复变量的函数论
- 批准号:
9970439 - 财政年份:1999
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627423 - 财政年份:1996
- 资助金额:
$ 36.44万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Geometric Function Theory in Several Complex Variables
职业:多个复变量的几何函数论
- 批准号:
2045104 - 财政年份:2021
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
- 批准号:
2055013 - 财政年份:2021
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
2000050 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1665412 - 财政年份:2017
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1363418 - 财政年份:2014
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1300867 - 财政年份:2013
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1412384 - 财政年份:2013
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Function theory in several complex variables and partial differential equations
多复变量和偏微分方程中的函数论
- 批准号:
1200652 - 财政年份:2012
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Function theory in several complex variables and partial differential equations
多复变量和偏微分方程中的函数论
- 批准号:
1265330 - 财政年份:2012
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1101481 - 财政年份:2011
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant