SGER: Precision Fabrication of Multi-Component, Multi-Functional Catalytic Membranes Using Photolithography

SGER:利用光刻技术精密制造多组分、多功能催化膜

基本信息

项目摘要

Intellectual Merit:Membrane reactors combine reaction and separation in the same unit and shift the equilibrium and increase yield by removing a product as it is formed. Selective oxygen permeable membranes may be used as selective catalytic reactors for example to make syngas commercially. The PI plans to use photolithographic techniques to fabricate multi-functional catalytic membranes consisting of assembled catalyst clusters on a functioning selective oxygen permeable membrane. The use of photolithography should result in a highly reproducible fabrication process that will reduce the intra-batch and inter-batch variability that is inherent in current catalytic manufacturing techniques. The fabrication process will reduce membrane fabrication cost by producing an automated manufacturing process similar to the wafer fabrication technology employed in the semiconductor industry. The enhancement effects on the oxygen flux through the membrane will provide the technology necessary for selective oxygen permeable membranes to become industrially attractive. The technique could also influence the study of model catalysts by fabricating multi-component, multi-functional heterogeneous catalysts that can be tested and characterized to gain fundamental information about the functionality of each catalyst component. In addition, the successful completion of the project should result in a membrane reactor that can be studied and modeled at bench scale and then scaled-up by making larger membrane wafers or stacks of parallel reactors.Fundamental information about cluster size, uniformity, and membrane stability during processing will be obtained, as well as an understanding of the reaction mechanism, the role of each component, and the direct effect of the catalyst on the oxygen transport through the membrane. The membranes will be characterized using Field Emission Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis. The oxygen permeation and the stability of the membranes will be tested using the partial oxidation of methane monitored with an online gas chromatograph and mass spectrometer.Broad Impact:The potential advances achievable using selective oxygen permeable membranes could make them a viable technology for applications such as hydrogen production for fuel cells (energy and environmental impact), oxygen sensors (homeland security), filtration of hazardous components from an oxygen stream (homeland security), and oxygen generation systems.
智力上的优点:膜反应器联合收割机将反应和分离结合在同一个单元中,并通过在产物形成时将其除去来移动平衡和增加产率。 选择性透氧膜可用作选择性催化反应器,例如用于商业上制造合成气。 PI计划使用催化技术来制造多功能催化膜,该多功能催化膜由功能选择性透氧膜上的组装催化剂簇组成。 使用光刻技术应该会产生高度可重复的制造工艺,从而减少当前催化制造技术固有的批内和批间变异性。 该制造工艺将通过产生类似于半导体工业中采用的晶片制造技术的自动化制造工艺来降低膜制造成本。 对通过膜的氧通量的增强效应将提供使选择性氧可渗透膜在工业上变得有吸引力所必需的技术。 该技术还可以通过制造多组分、多功能的非均相催化剂来影响模型催化剂的研究,这些催化剂可以被测试和表征以获得关于每个催化剂组分的功能的基本信息。 此外,该项目的成功完成将导致膜反应器可以在实验室规模上进行研究和建模,然后通过制造更大的膜晶片或并联反应器的堆叠来扩大规模。将获得关于簇尺寸,均匀性和膜稳定性的基本信息,以及对反应机理,每个组件的作用,以及催化剂对氧通过膜的输送的直接影响。 将使用场发射扫描电子显微镜和能量色散X射线分析对膜进行表征。 氧气渗透和膜的稳定性将使用甲烷的部分氧化进行测试,通过在线气相色谱仪和质谱仪进行监测。广泛的影响:使用选择性氧气渗透膜可实现的潜在进步可能使其成为一种可行的应用技术,如用于燃料电池的氢气生产(能源和环境影响),氧气传感器(国土安全),从氧气流中过滤有害成分(国土安全)和氧气发生系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Stagg-Williams其他文献

Susan Stagg-Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Stagg-Williams', 18)}}的其他基金

Hydroxyapatite Formation during Hydrothermal Liquefaction of Algae: Synthesis and Catalytic Implications
藻类水热液化过程中羟基磷灰石的形成:合成和催化意义
  • 批准号:
    1438652
  • 财政年份:
    2014
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Standard Grant
RET: Shaping Inquiry from Feedstock to Tailpipe with Education Development (SHIFTED)
RET:通过教育发展塑造从原料到尾气的探究(SHIFTED)
  • 批准号:
    1301051
  • 财政年份:
    2013
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Continuing Grant
RET: Shaping Inquiry from Feedstock to Tailpipe (SHIFT)
RET:从原料到尾管的成型查询(SHIFT)
  • 批准号:
    0909100
  • 财政年份:
    2009
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Standard Grant
SGER: Enhanced Scalability of Chemical Processes through Narrow-Gap Architectures
SGER:通过窄间隙架构增强化学工艺的可扩展性
  • 批准号:
    0001518
  • 财政年份:
    2000
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Standard Grant

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Precision in 3D Printing fabrication
3D 打印制造精度
  • 批准号:
    552437-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 6.44万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of Ultra-Short Pulse X-ray Imaging Method through High-Precision Wolter Mirror Fabrication
通过高精度 Wolter 镜制造开发超短脉冲 X 射线成像方法
  • 批准号:
    19H00736
  • 财政年份:
    2019
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fabrication of functional surface by ultra-precision cutting of mold materials for plastic injection molding
注塑成型模具材料超精密切削加工功能面
  • 批准号:
    19K04127
  • 财政年份:
    2019
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of fabrication technique using small-diameter ion beam for high-precision optics
开发高精度光学用小直径离子束制造技术
  • 批准号:
    18K03880
  • 财政年份:
    2018
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Fabrication Method of High-Precision and High-Strength Structures with Cellulose Nanofiber for Additive Manufacturing
用于增材制造的高精度、高强度纤维素纳米纤维结构的设计与制造方法
  • 批准号:
    17K06126
  • 财政年份:
    2017
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Innovative Non-Waste-Wax-Formwork for the Fabrication of High-Precision Machine Frames made of UHPC
用于制造由 UHPC 制成的高精度机架的创新型无废蜡模板
  • 批准号:
    387520741
  • 财政年份:
    2017
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Research Grants (Transfer Project)
High precision parts fabrication using electroplating of 3D Printed parts
使用 3D 打印零件电镀制造高精度零件
  • 批准号:
    493259-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Engage Grants Program
Fabrication of Lithium Niobate waveguides using ultra-precision ductile-mode cutting method
采用超精密延性模切割法制造铌酸锂波导
  • 批准号:
    15K18055
  • 财政年份:
    2015
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
High precision fabrication of deep trenches for photonic communication chips
光子通信芯片深沟槽的高精度制造
  • 批准号:
    491002-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Engage Grants Program
Establishment of digital impression method and fabrication technique of high precision prosthesis using CAD/CAM
CAD/CAM数字化印模方法建立及高精度假体制作技术
  • 批准号:
    26462939
  • 财政年份:
    2014
  • 资助金额:
    $ 6.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了