ITR: Collaborative Research: Representation and Learning in Computational Game theory
ITR:协作研究:计算博弈论中的表示和学习
基本信息
- 批准号:0325281
- 负责人:
- 金额:$ 37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-15 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational Game Theory is a rapidly emerging discipline at the intersection of computer science, economics, and related fields. It is becoming a fundamental tool for understanding and designing complex multiagent environments such as the Internet, systems of autonomous agents, and electronic economies. The objective of this program is the development of powerful new representations for complex game-theoretic and economic reasoning problems, and strategic learning algorithms for adjusting their parameters.Special emphasis is being given to models permitting the specification of natural network structure in the interactions within a large population of players, and models generalizing the spirit of financial markets, in which interactions take place via global intermediate quantities. Powerful recent machine learning methods such as boosting and exponential updates are also being applied to the more subtle and complex setting of learning in games.The expected results of the program are a rich set of new modeling methods for game-theoretic applications, and computationally efficient algorithms for reasoning with them, including the computation of Nash, correlated, and other equilibria, as well as efficient learning methods with known convergence properties. Special emphasis will be given to formal analysis, and the resulting methods will provide a new toolbox for researchers in economics, social science, evolutionary biology, and other fields in which game-theoretic approaches are common. The findings of the program will be widely disseminated through international conferences and journals, as well as more specialized workshops deliberately bringing together researchers from the different relevant disciplines.
计算博弈论是一门迅速崛起的学科,它是计算机科学、经济学及其相关领域的交叉学科。它正在成为理解和设计复杂的多智能体环境的基本工具,如互联网、自主智能体系统和电子经济。该项目的目标是为复杂的博弈论和经济推理问题开发强大的新表示法,以及调整其参数的战略学习算法。特别强调允许在大量参与者的交互中指定自然网络结构的模型,以及概括金融市场精神的模型,其中交互通过全局中间量发生。最近强大的机器学习方法,如Boost和指数更新,也被应用到游戏中更微妙和复杂的学习环境中。该程序的预期结果是一套丰富的新建模方法,用于博弈论应用,以及用于推理的计算高效算法,包括Nash、相关和其他均衡的计算,以及具有已知收敛性质的高效学习方法。将特别强调形式分析,由此产生的方法将为经济学、社会科学、进化生物学和其他博弈论方法普遍存在的领域的研究人员提供一个新的工具箱。该项目的研究结果将通过国际会议和期刊,以及有意将不同相关学科的研究人员聚集在一起的更专业的研讨会广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Littman其他文献
Model-based reasoning
基于模型的推理
- DOI:
10.1016/j.compedu.2012.11.014 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Michael Jackson;Janusz Wojtusiak;Dayne Freitag;Eugene Subbotsky;Hans M. Nordahl;Jens C. Thimm;John Burgoyne;Roberto Poli;Thomas R. Guskey;Michael Davison;J. Magnotti;Adam M. Goodman;Jeffrey S. Katz;L. Verschaffel;W. Dooren;B. Smedt;Sean A. Fulop;Melva R. Grant;Leonid I. Perlovsky;B. De Smedt;P. Ghesquière;Dariusz Plewczynski;Leily Ziglari;P. Birjandi;Scott Rick;Roberto Weber;N. Seel;Maike Luhmann;Michael Eid;A. Antonietti;Barbara Colombo;Hamish Coates;Ali Radloff;P. Pirnay;Dirk Ifenthaler;Edward Swing;Craig A Anderson;David Tzuriel;Norman M. Weinberger;David C. Riccio;Patrick K. Cullen;J. Tallet;Megan L. Hoffman;David A. Washburn;Iván Izquierdo;Jorge H. Medina;M. Cammarota;A. Podolskiy;Joke Torbeyns;J. Kranzler;P. A. Kirschner;F. Kirschner;Kenn Apel;Julie A. Wolter;J. Masterson;JungMi Lee;Stefan N Groesser;Sabine Al;Philip Barker;Paul Schaik;I. Cutica;Monica Bucciarelli;K. Pata;Anna Strasser;A. Guillot;N. Hoyek;Christian Collet;Maria Opfermann;Roger Azevedo;Detlev Leutner;Thomas C. Toppino;Alice Y. Kolb;David A. Kolb;P. Brazdil;Ricardo Vilalta;Carlos Soares;C. Giraud;Jeffrey W. Bloom;Tyler Volk;Marwan A. Dwairy;Richard A. Swanson;Johanna Pöysä;K. Luwel;Theo Hug;Angélique Martin;Nicolas Guéguen;Craig Hassed;Fabio Alivernini;Michael Herczeg;M. Mastropieri;T. Scruggs;Angelika Rieder;S. Castillo;Gerardo Ayala;R. Low;R. Babuška;Barbara C. Buckley;Henry Markovits;Sungho Kim;In;Michael J. Spector;A. Towse;Charlie N. Lewis;Brian Francis;David N. Rapp;Pratim Sengupta;Sidney D’Mello;Serge Brand;J. Patry;Cees Klaassen;Sieglinde Weyringer;Alfred Weinberger;Marilla D. Svinicki;Jane S. Vogler;Andrew J. Martin;John M. Keller;ChanMin Kim;Gabriele Wulf;Lynne E. Parker;Michael Wunder;Michael Littman;Lisa J. Lehmberg;C. Victor Fung;Hannele Niemi;Steven Reiss;Piet Desmet;F. Cornillie;Helmut M. Niegemann;Steffi Heidig;Dominic W. Massaro;Charles Fadel;Cheryl Lemke;R. Grabner;Michael D. Basil;Daniel R. Little;Stephan Lewandowsky;Parmjit Singh;Zheng Liu;Marcelo H. Ang;W. Seah;Jack Heller;C. Randles;Kenneth S. Aigen - 通讯作者:
Kenneth S. Aigen
Computably Continuous Reinforcement-Learning Objectives are PAC-learnable
可计算连续强化学习目标是 PAC 可学习的
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cambridge Yang;Michael Littman;Michael Carbin - 通讯作者:
Michael Carbin
Michael Littman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Littman', 18)}}的其他基金
EAGER: Training A Mobile Robot from Human Feedback via Income Learning
EAGER:通过收入学习根据人类反馈训练移动机器人
- 批准号:
1643413 - 财政年份:2016
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Collaborative Research: American Innovations in an Age of Discovery: Teaching Science and Engineering through 3D-printed Historical Reconstructions
合作研究:发现时代的美国创新:通过 3D 打印历史重建教授科学与工程
- 批准号:
1508319 - 财政年份:2015
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
- 批准号:
1414931 - 财政年份:2013
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
- 批准号:
1414935 - 财政年份:2013
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Speeding Up Learning through Modeling the Pragmatics of Training
RI:小型:协作研究:通过培训语用建模加速学习
- 批准号:
1319618 - 财政年份:2013
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
- 批准号:
1065195 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
- 批准号:
1018152 - 财政年份:2010
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Collaborative Research: Pilot Research on Language-Based Strategies for Creative Problem Solving
协作研究:基于语言的创造性问题解决策略的试点研究
- 批准号:
0757490 - 财政年份:2008
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
RI: Collaborative Research: Feature Discovery and Benchmarks for Exportable Reinforcement Learning
RI:协作研究:可导出强化学习的特征发现和基准
- 批准号:
0713148 - 财政年份:2007
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
HSD-DRU: The Role of Communication in the Dynamics of Effective Decision Making
HSD-DRU:沟通在有效决策动态中的作用
- 批准号:
0624191 - 财政年份:2007
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
相似海外基金
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
1404694 - 财政年份:2013
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
- 批准号:
1139735 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
- 批准号:
0838899 - 财政年份:2008
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
0833849 - 财政年份:2008
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0808419 - 财政年份:2007
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0849301 - 财政年份:2007
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
- 批准号:
0711040 - 财政年份:2007
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Collaborative Research: ITR-(ASE)-(dmc): Overcoming Fractionation Errors in Cancer Treatement Planning
合作研究:ITR-(ASE)-(dmc):克服癌症治疗计划中的分割错误
- 批准号:
0749671 - 财政年份:2006
- 资助金额:
$ 37万 - 项目类别:
Standard Grant














{{item.name}}会员




