RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
基本信息
- 批准号:1065195
- 负责人:
- 金额:$ 70.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to develop techniques that will permit a computer or robot to learn from examples to carry out multipart tasks specified in natural language on behalf of a user. It will study each of these components in isolation, but a significant focus will be on integrating them into a coherent system. The project will also leverage this technology to provide an entry point to educate non- or pre-computer science students about the capabilities and utility of computers as tools.Our approach uses three main subcomponents, each of which requires innovative research to solve its portion of the overall problem. In addition, the integrated architecture is a novel contribution of this work. The three components are (1) recognizing intention from observed behavior using extensions of inverse reinforcement learning, (2) translating instructions to task specifications using novel techniques in the area of natural language processing, and (3) creating generalized task specifications to match user intentions using probabilistic methods for creating and managing abstractions.The goal of the work is develop technology for an improved ability for human users to interact with intelligent agents, the incorporation of novel AI research insights and activities into education and outreach activities, and the development of resources for the AI educator community. In addition to permitting intelligent agents to be developed and trained in the future for a broad range of complex application domains, the interactive agents that we will develop will be used for outreach and student learning.
这项研究的目标是开发技术,允许计算机或机器人从示例中学习,以代表用户执行自然语言指定的多部分任务。 它将孤立地研究这些组成部分中的每一个,但一个重要的重点将是将它们纳入一个连贯的系统。 该项目还将利用这项技术提供一个切入点,教育非计算机科学或预计算机科学的学生有关的能力和效用的计算机作为工具。我们的方法使用三个主要的子组件,其中每一个都需要创新的研究,以解决其部分的整体问题。 此外,集成架构是这项工作的一个新的贡献。 这三个组成部分是(1)使用反向强化学习的扩展从观察到的行为中识别意图,(2)使用自然语言处理领域的新技术将指令翻译为任务规范,以及(3)使用概率方法创建和管理抽象,创建通用任务规范以匹配用户意图。工作的目标是开发技术,以提高人类用户与智能代理交互,将新的AI研究见解和活动纳入教育和推广活动,以及为AI教育者社区开发资源。 除了允许智能代理开发和培训,在未来广泛的复杂的应用领域,我们将开发的互动代理将用于推广和学生学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Littman其他文献
Model-based reasoning
基于模型的推理
- DOI:
10.1016/j.compedu.2012.11.014 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Michael Jackson;Janusz Wojtusiak;Dayne Freitag;Eugene Subbotsky;Hans M. Nordahl;Jens C. Thimm;John Burgoyne;Roberto Poli;Thomas R. Guskey;Michael Davison;J. Magnotti;Adam M. Goodman;Jeffrey S. Katz;L. Verschaffel;W. Dooren;B. Smedt;Sean A. Fulop;Melva R. Grant;Leonid I. Perlovsky;B. De Smedt;P. Ghesquière;Dariusz Plewczynski;Leily Ziglari;P. Birjandi;Scott Rick;Roberto Weber;N. Seel;Maike Luhmann;Michael Eid;A. Antonietti;Barbara Colombo;Hamish Coates;Ali Radloff;P. Pirnay;Dirk Ifenthaler;Edward Swing;Craig A Anderson;David Tzuriel;Norman M. Weinberger;David C. Riccio;Patrick K. Cullen;J. Tallet;Megan L. Hoffman;David A. Washburn;Iván Izquierdo;Jorge H. Medina;M. Cammarota;A. Podolskiy;Joke Torbeyns;J. Kranzler;P. A. Kirschner;F. Kirschner;Kenn Apel;Julie A. Wolter;J. Masterson;JungMi Lee;Stefan N Groesser;Sabine Al;Philip Barker;Paul Schaik;I. Cutica;Monica Bucciarelli;K. Pata;Anna Strasser;A. Guillot;N. Hoyek;Christian Collet;Maria Opfermann;Roger Azevedo;Detlev Leutner;Thomas C. Toppino;Alice Y. Kolb;David A. Kolb;P. Brazdil;Ricardo Vilalta;Carlos Soares;C. Giraud;Jeffrey W. Bloom;Tyler Volk;Marwan A. Dwairy;Richard A. Swanson;Johanna Pöysä;K. Luwel;Theo Hug;Angélique Martin;Nicolas Guéguen;Craig Hassed;Fabio Alivernini;Michael Herczeg;M. Mastropieri;T. Scruggs;Angelika Rieder;S. Castillo;Gerardo Ayala;R. Low;R. Babuška;Barbara C. Buckley;Henry Markovits;Sungho Kim;In;Michael J. Spector;A. Towse;Charlie N. Lewis;Brian Francis;David N. Rapp;Pratim Sengupta;Sidney D’Mello;Serge Brand;J. Patry;Cees Klaassen;Sieglinde Weyringer;Alfred Weinberger;Marilla D. Svinicki;Jane S. Vogler;Andrew J. Martin;John M. Keller;ChanMin Kim;Gabriele Wulf;Lynne E. Parker;Michael Wunder;Michael Littman;Lisa J. Lehmberg;C. Victor Fung;Hannele Niemi;Steven Reiss;Piet Desmet;F. Cornillie;Helmut M. Niegemann;Steffi Heidig;Dominic W. Massaro;Charles Fadel;Cheryl Lemke;R. Grabner;Michael D. Basil;Daniel R. Little;Stephan Lewandowsky;Parmjit Singh;Zheng Liu;Marcelo H. Ang;W. Seah;Jack Heller;C. Randles;Kenneth S. Aigen - 通讯作者:
Kenneth S. Aigen
Computably Continuous Reinforcement-Learning Objectives are PAC-learnable
可计算连续强化学习目标是 PAC 可学习的
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cambridge Yang;Michael Littman;Michael Carbin - 通讯作者:
Michael Carbin
Michael Littman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Littman', 18)}}的其他基金
EAGER: Training A Mobile Robot from Human Feedback via Income Learning
EAGER:通过收入学习根据人类反馈训练移动机器人
- 批准号:
1643413 - 财政年份:2016
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: American Innovations in an Age of Discovery: Teaching Science and Engineering through 3D-printed Historical Reconstructions
合作研究:发现时代的美国创新:通过 3D 打印历史重建教授科学与工程
- 批准号:
1508319 - 财政年份:2015
- 资助金额:
$ 70.39万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
- 批准号:
1414931 - 财政年份:2013
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
- 批准号:
1414935 - 财政年份:2013
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Speeding Up Learning through Modeling the Pragmatics of Training
RI:小型:协作研究:通过培训语用建模加速学习
- 批准号:
1319618 - 财政年份:2013
- 资助金额:
$ 70.39万 - 项目类别:
Continuing Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
- 批准号:
1018152 - 财政年份:2010
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: Pilot Research on Language-Based Strategies for Creative Problem Solving
协作研究:基于语言的创造性问题解决策略的试点研究
- 批准号:
0757490 - 财政年份:2008
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
RI: Collaborative Research: Feature Discovery and Benchmarks for Exportable Reinforcement Learning
RI:协作研究:可导出强化学习的特征发现和基准
- 批准号:
0713148 - 财政年份:2007
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
HSD-DRU: The Role of Communication in the Dynamics of Effective Decision Making
HSD-DRU:沟通在有效决策动态中的作用
- 批准号:
0624191 - 财政年份:2007
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Evaluating Next Generation Probabilistic Planners
评估下一代概率规划器
- 批准号:
0329153 - 财政年份:2003
- 资助金额:
$ 70.39万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
Continuing Grant