Evaluating Next Generation Probabilistic Planners

评估下一代概率规划器

基本信息

  • 批准号:
    0329153
  • 负责人:
  • 金额:
    $ 24.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

This research project will develop planning algorithms and a set of general methods for evaluating probabilistic planners. Probabilistic planning is the area of sequential decision making concerned with choosing operators that change the state of the world when the available operators have uncertain outcomes. The driving goal of this project is to advance the state of the art of probabilistic planners toward increased efficiency, improved robustness to problem variations, and broadened applicability to real-world problems. To accomplish its goal, the project will focus on two interrelated tasks. First, it will propose and develop a methodology for evaluating probabilistic planners. This will require studying a set of alternatives and running experiments to correlate evaluation metrics with desirable outcomes in increasingly realistic domains. The project efforts will be coordinated closely with the larger research community through the biannual International Planning Competition (IPC), which will soon introduce a probabilistic track to its existing structure. This project will organize the track and will provide the community with a set of software programs for executing and evaluating plans in probabilistic domains. Second, the project members will pursue the development of their own planning algorithms, with a particular emphasis on approaches that exploit the relationship between probabilistic planning and reinforcement learning.The project will have definite research impacts in its study of the problem of probabilistic planning and how progress should be measured in the field. It will also advance the state of the art in planning and reinforcement learning through the exploration of instance-based techniques for learning to plan more effectively. However, the focus of the majority of the work will be on its broader impacts on the planning community as a whole, with concrete domain description languages, evaluation software, and benchmark problems that will serve to focus the community's efforts toward developing algorithms to solve problems of significant scientific and economic interest.
本研究计画将发展规划演算法及一套评估机率规划者之一般方法。 概率规划是顺序决策的领域,涉及在可用运营商具有不确定结果时选择改变世界状态的运营商。 该项目的驱动目标是推进概率规划器的最新发展,以提高效率,改善对问题变化的鲁棒性,并扩大对现实世界问题的适用性。 为实现其目标,该项目将侧重于两项相互关联的任务。 首先,它将提出并发展一种评估概率规划者的方法。 这将需要研究一套替代方案并进行实验,以将评估指标与日益现实的领域中的理想结果相关联。 该项目的工作将通过一年两次的国际规划竞赛(IPC)与更大的研究界密切协调,该竞赛将很快在其现有结构中引入概率轨道。 该项目将组织跟踪,并将提供一套软件程序的社区执行和评估计划的概率域。 第二,项目成员将致力于开发自己的规划算法,特别强调利用概率规划和强化学习之间关系的方法。该项目将在研究概率规划问题以及如何衡量该领域的进展方面产生一定的研究影响。 它还将通过探索基于实例的技术来提高规划和强化学习的最新水平,以更有效地学习规划。 然而,大部分工作的重点将是其对整个规划界的更广泛的影响,具体的领域描述语言,评估软件和基准问题,将有助于集中社区的努力,开发算法,以解决重大的科学和经济利益的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Littman其他文献

Model-based reasoning
基于模型的推理
  • DOI:
    10.1016/j.compedu.2012.11.014
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Jackson;Janusz Wojtusiak;Dayne Freitag;Eugene Subbotsky;Hans M. Nordahl;Jens C. Thimm;John Burgoyne;Roberto Poli;Thomas R. Guskey;Michael Davison;J. Magnotti;Adam M. Goodman;Jeffrey S. Katz;L. Verschaffel;W. Dooren;B. Smedt;Sean A. Fulop;Melva R. Grant;Leonid I. Perlovsky;B. De Smedt;P. Ghesquière;Dariusz Plewczynski;Leily Ziglari;P. Birjandi;Scott Rick;Roberto Weber;N. Seel;Maike Luhmann;Michael Eid;A. Antonietti;Barbara Colombo;Hamish Coates;Ali Radloff;P. Pirnay;Dirk Ifenthaler;Edward Swing;Craig A Anderson;David Tzuriel;Norman M. Weinberger;David C. Riccio;Patrick K. Cullen;J. Tallet;Megan L. Hoffman;David A. Washburn;Iván Izquierdo;Jorge H. Medina;M. Cammarota;A. Podolskiy;Joke Torbeyns;J. Kranzler;P. A. Kirschner;F. Kirschner;Kenn Apel;Julie A. Wolter;J. Masterson;JungMi Lee;Stefan N Groesser;Sabine Al;Philip Barker;Paul Schaik;I. Cutica;Monica Bucciarelli;K. Pata;Anna Strasser;A. Guillot;N. Hoyek;Christian Collet;Maria Opfermann;Roger Azevedo;Detlev Leutner;Thomas C. Toppino;Alice Y. Kolb;David A. Kolb;P. Brazdil;Ricardo Vilalta;Carlos Soares;C. Giraud;Jeffrey W. Bloom;Tyler Volk;Marwan A. Dwairy;Richard A. Swanson;Johanna Pöysä;K. Luwel;Theo Hug;Angélique Martin;Nicolas Guéguen;Craig Hassed;Fabio Alivernini;Michael Herczeg;M. Mastropieri;T. Scruggs;Angelika Rieder;S. Castillo;Gerardo Ayala;R. Low;R. Babuška;Barbara C. Buckley;Henry Markovits;Sungho Kim;In;Michael J. Spector;A. Towse;Charlie N. Lewis;Brian Francis;David N. Rapp;Pratim Sengupta;Sidney D’Mello;Serge Brand;J. Patry;Cees Klaassen;Sieglinde Weyringer;Alfred Weinberger;Marilla D. Svinicki;Jane S. Vogler;Andrew J. Martin;John M. Keller;ChanMin Kim;Gabriele Wulf;Lynne E. Parker;Michael Wunder;Michael Littman;Lisa J. Lehmberg;C. Victor Fung;Hannele Niemi;Steven Reiss;Piet Desmet;F. Cornillie;Helmut M. Niegemann;Steffi Heidig;Dominic W. Massaro;Charles Fadel;Cheryl Lemke;R. Grabner;Michael D. Basil;Daniel R. Little;Stephan Lewandowsky;Parmjit Singh;Zheng Liu;Marcelo H. Ang;W. Seah;Jack Heller;C. Randles;Kenneth S. Aigen
  • 通讯作者:
    Kenneth S. Aigen
Computably Continuous Reinforcement-Learning Objectives are PAC-learnable
可计算连续强化学习目标是 PAC 可学习的
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cambridge Yang;Michael Littman;Michael Carbin
  • 通讯作者:
    Michael Carbin

Michael Littman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Littman', 18)}}的其他基金

EAGER: Training A Mobile Robot from Human Feedback via Income Learning
EAGER:通过收入学习根据人类反馈训练移动机器人
  • 批准号:
    1643413
  • 财政年份:
    2016
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
Collaborative Research: American Innovations in an Age of Discovery: Teaching Science and Engineering through 3D-printed Historical Reconstructions
合作研究:发现时代的美国创新:通过 3D 打印历史重建教授科学与工程
  • 批准号:
    1508319
  • 财政年份:
    2015
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
  • 批准号:
    1414931
  • 财政年份:
    2013
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
  • 批准号:
    1414935
  • 财政年份:
    2013
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Speeding Up Learning through Modeling the Pragmatics of Training
RI:小型:协作研究:通过培训语用建模加速学习
  • 批准号:
    1319618
  • 财政年份:
    2013
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Teaching Computers to Follow Verbal Instructions
RI:媒介:协作研究:教计算机遵循口头指令
  • 批准号:
    1065195
  • 财政年份:
    2011
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
RI: Small: Understanding Value-based Multiagent Learning and Its Applications
RI:小:了解基于价值的多智能体学习及其应用
  • 批准号:
    1018152
  • 财政年份:
    2010
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Pilot Research on Language-Based Strategies for Creative Problem Solving
协作研究:基于语言的创造性问题解决策略的试点研究
  • 批准号:
    0757490
  • 财政年份:
    2008
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
RI: Collaborative Research: Feature Discovery and Benchmarks for Exportable Reinforcement Learning
RI:协作研究:可导出强化学习的特征发现和基准
  • 批准号:
    0713148
  • 财政年份:
    2007
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
HSD-DRU: The Role of Communication in the Dynamics of Effective Decision Making
HSD-DRU:沟通在有效决策动态中的作用
  • 批准号:
    0624191
  • 财政年份:
    2007
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Building and Evaluating an automated hydroponic plant production system for the next generation EDEN ISS lunar greenhouse at the German Aerospace Center
为德国航空航天中心的下一代 EDEN ISS 月球温室构建和评估自动化水培植物生产系统
  • 批准号:
    568546-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Evaluating the Risks and Benefits of the Next Generation of Direct-to-Consumer Genetic Tests
评估下一代直接面向消费者的基因测试的风险和收益
  • 批准号:
    10678974
  • 财政年份:
    2020
  • 资助金额:
    $ 24.39万
  • 项目类别:
Evaluating the Risks and Benefits of the Next Generation of Direct-to-Consumer Genetic Tests
评估下一代直接面向消费者的基因测试的风险和收益
  • 批准号:
    10055077
  • 财政年份:
    2020
  • 资助金额:
    $ 24.39万
  • 项目类别:
Evaluating the Risks and Benefits of the Next Generation of Direct-to-Consumer Genetic Tests
评估下一代直接面向消费者的基因测试的风险和收益
  • 批准号:
    10475972
  • 财政年份:
    2020
  • 资助金额:
    $ 24.39万
  • 项目类别:
Catalyst Project: Creating and Evaluating a Culturally Representative STEM Curriculum Supported by Next Generation Science Standards
催化剂项目:创建和评估由下一代科学标准支持的具有文化代表性的 STEM 课程
  • 批准号:
    1928832
  • 财政年份:
    2019
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Evaluating Methods to Study the Phylogenetic Distribution of Genome Sizes in Carabid Beetles, including Next-Generation Sequencing of Old Museum Specimens
论文研究:评估研究步甲甲虫基因组大小的系统发育分布的方法,包括旧博物馆标本的下一代测序
  • 批准号:
    1702062
  • 财政年份:
    2017
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Bioinformatics Software Application for Visualizing and Evaluating Evolutionary Networks of Next-Generation Sequences
SBIR 第一阶段:用于可视化和评估下一代序列进化网络的生物信息学软件应用程序
  • 批准号:
    1648053
  • 财政年份:
    2016
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Standard Grant
Evaluating Next-Generation System Level Interconnect for FPGAs
评估 FPGA 的下一代系统级互连
  • 批准号:
    497574-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 24.39万
  • 项目类别:
    University Undergraduate Student Research Awards
Evaluating various Vaccinia virus strains as oncolytic engines through Next Generation Sequencing of co-infections
通过合并感染的下一代测序评估各种痘苗病毒株作为溶瘤引擎
  • 批准号:
    346043
  • 财政年份:
    2016
  • 资助金额:
    $ 24.39万
  • 项目类别:
Development of a new method of evaluating waste landfill sites using microbial community analysis by next-generation sequencing
开发利用下一代测序进行微生物群落分析来评估废物填埋场的新方法
  • 批准号:
    16K21716
  • 财政年份:
    2016
  • 资助金额:
    $ 24.39万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了