Low-dimensional Geometry and Topology

低维几何和拓扑

基本信息

  • 批准号:
    0343694
  • 负责人:
  • 金额:
    $ 45.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-0072540PI: William ThurstonAbstract: A variety of structures on three-manifolds have contributed significantly to our understanding: notably, geometric structures, incompressible surfaces, foliations, laminations, contact structures, automatic structures on fundamental groups of three-manifolds, and the lattice of finite-sheeted coverings of three-manifolds. There are many connections among these structures, but nevertheless the known connections are sporadic and often only loose, although suggestive of deeper connections remaining to be discovered. The PI will investigate these various structures and their interrelationships, with an emphasis on analyzing computability, and developing techniques for actually constructing and computing examples. For example, is there a construction to go from a taut foliation or an essential lamination to a geometric decomposition? And conversely, does every hyperbolic 3-manifold admit a foliation or at least a genuine lamination?Three-manifolds are the mathematical descriptions of the possible ways for 3-dimensional space to be topologically interconnected. They are important because they arise through geometric models in every corner of mathematics. A central theme in modern three-manifold topology is the Geometrization conjecture, which is the conjecture that all three-manifolds are made up of locally homogeneous pieces, that is, three-manifolds that have a geometry in which a neighborhood of any one point is completely identical to a neighborhood of any other point, up to some fixed radius. This conjecture, proposed by the PI about 20 years ago is now supported by a great deal of theoretical and empirical evidence. Nonetheless, many basic questions remain unknown, including the famous Poincare conjecture a special case of the Geometrization conjecture which asserts that there is only one possible topology for a three-manifold in which every loop can be contracted to fit inside a small ball. Besides geometric structures for 3-manifolds, there are a number of other interesting structures that have important implications for topology, but only loose connections among them are understood. Among these structures are incompressible surfaces, foliations (a kind of layered structure), laminations (layered structures that only exist on part of the manifold), contact structures (related to Hamiltonian mechanics), and various combinatorial structures from group theory. The PI will investigate connections among these various structures, with an emphasis on computability and techniques of making actual computations of examplesThe project is supported by both the Topology Program in the Division of Mathematical Sciences and the Numeric, Symbolic, and Geometric Computation Program in the Computer and Information Science and Engineering Directorate
提案:DMS-0072540 PI:William Thurston摘要:三维流形上的各种结构对我们的理解有很大的贡献:值得注意的是,几何结构,不可压缩曲面,叶理,叠层,接触结构,三维流形基本群上的自动结构,以及三维流形的有限片覆盖格。 这些结构之间有许多连接,但已知的连接是零星的,往往只是松散的,虽然暗示更深的连接仍有待发现。 PI将研究这些不同的结构及其相互关系,重点是分析可计算性,并开发实际构建和计算示例的技术。 例如,有没有一种结构可以从一个绷紧的叶理或一个基本的层压结构转变为一个几何分解结构?反过来说,是否每一个双曲三维流形都有叶理或至少有真正的层理?三维流形是三维空间拓扑互连的可能方式的数学描述。它们之所以重要,是因为它们是通过数学的每一个角落中的几何模型产生的。 现代三流形拓扑学的一个中心主题是几何化猜想,它是所有三流形都由局部齐次部分组成的猜想,也就是说,三流形具有一个几何,其中任何一个点的邻域与任何其他点的邻域完全相同,直到某个固定半径。 这个猜想,大约20年前由PI提出,现在得到了大量理论和经验证据的支持。 尽管如此,许多基本问题仍然未知,包括著名的庞加莱猜想,这是几何化猜想的一个特例,它断言对于一个三流形只有一种可能的拓扑结构,其中每个回路都可以收缩到一个小球内。 除了三维流形的几何结构之外,还有许多其他有趣的结构对拓扑学有重要的影响,但它们之间的联系只是松散的。 这些结构包括不可压缩曲面、叶理(一种层状结构)、叠层(只存在于流形的一部分上的层状结构)、接触结构(与哈密尔顿力学有关)以及来自群论的各种组合结构。 PI将研究这些不同结构之间的联系,重点是可计算性和实例实际计算的技术。该项目得到数学科学部拓扑计划和计算机与信息科学与工程局数值、符号和几何计算计划的支持

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Thurston其他文献

Three-Dimensional Visualization of Long-Range Atmospheric Transport of Crop Pathogens and Insect Pests
作物病原体和害虫远距离大气传播的三维可视化
  • DOI:
    10.3390/atmos14060910
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Meyer;William Thurston;Jacob W. Smith;Alan Schumacher;S. Millington;D. Hodson;K. Cressman;C. Gilligan
  • 通讯作者:
    C. Gilligan
A fast, physically based model of firebrand transport by bushfire plumes
  • DOI:
    10.1016/j.agrformet.2023.109839
  • 发表时间:
    2024-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey D. Kepert;William Thurston;Kevin J. Tory
  • 通讯作者:
    Kevin J. Tory
Irrigation can create new green bridges that promote rapid intercontinental spread of the wheat stem rust pathogen
灌溉可以建立新的绿色桥梁,促进小麦茎锈病病原体快速洲际传播
  • DOI:
    10.1088/1748-9326/ac9ac7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    C. Bradshaw;William Thurston;D. Hodson;Tamás Mona;Jacob W. Smith;S. Millington;Gerald Blasch;Y. Alemayehu;Kitessa Gutu;M. Hort;C. Gilligan
  • 通讯作者:
    C. Gilligan
The symbolic dynamics of tiling the integers
  • DOI:
    10.1007/bf02764069
  • 发表时间:
    2002-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Ethan M. Coven;William Geller;Sylvia Silberger;William Thurston
  • 通讯作者:
    William Thurston
Foraging Behaviours of Breeding Arctic Terns Sterna paradisaea and the Impact of Local Weather and Fisheries
北极繁殖燕鸥的觅食行为及当地天气和渔业的影响
  • DOI:
    10.3389/fmars.2021.760670
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    J. Morten;J. Burgos;Lee Collins;S. Maxwell;Eliza;N. Parr;William Thurston;Freydís Vigfúsdóttir;M. Witt;L. Hawkes
  • 通讯作者:
    L. Hawkes

William Thurston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Thurston', 18)}}的其他基金

Low-dimensional Geometry and Topology
低维几何和拓扑
  • 批准号:
    0513436
  • 财政年份:
    2005
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Continuing Grant
Low-dimensional Geometry and Topology
低维几何和拓扑
  • 批准号:
    0072540
  • 财政年份:
    2000
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Low-Dimensional Geometry and Topology
数学科学:低维几何和拓扑
  • 批准号:
    9704135
  • 财政年份:
    1997
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Workshop on Statistical Methods in Molecular Biology; Berkeley, California; March 30 - April 3,1992
数学科学:分子生物学统计方法研讨会;
  • 批准号:
    8505550
  • 财政年份:
    1986
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Continuing Grant
Alan T. Waterman Award
艾伦·T·沃特曼奖
  • 批准号:
    7919775
  • 财政年份:
    1979
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
  • 批准号:
    81150011
  • 批准年份:
    2011
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
肝脏管道系统数字化及三维成像的研究
  • 批准号:
    30470493
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant
A Comparative Framework for Modeling the Low-Dimensional Geometry of Neural Population States
神经群体状态低维几何建模的比较框架
  • 批准号:
    10007243
  • 财政年份:
    2020
  • 资助金额:
    $ 45.3万
  • 项目类别:
Design Methodology of Differential Geometry and Mechanical Function on Low-Dimensional Carbon Nano Materials Considering Hierarchy of Lattice Defects
考虑晶格缺陷层次的低维碳纳米材料微分几何和力学函数设计方法
  • 批准号:
    20K04174
  • 财政年份:
    2020
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and computability in low-dimensional topology and group theory.
低维拓扑和群论中的几何和可计算性。
  • 批准号:
    2283616
  • 财政年份:
    2019
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Studentship
Interactions Between Contact Geometry, Floer Theory and Low-Dimensional Topology
接触几何、弗洛尔理论和低维拓扑之间的相互作用
  • 批准号:
    1907654
  • 财政年份:
    2019
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant
Biology, Analysis, Geometry, Energies, Links: A Program on Low-dimensional Topology, Geometry, and Applications
生物学、分析、几何、能量、链接:低维拓扑、几何和应用程序
  • 批准号:
    1931930
  • 财政年份:
    2019
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant
Conference on low-dimensional topology and geometry
低维拓扑与几何会议
  • 批准号:
    1707524
  • 财政年份:
    2017
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Big Data, It's Not So Big: Exploiting Low-Dimensional Geometry for Learning and Inference
BIGDATA:协作研究:F:大数据,它并不是那么大:利用低维几何进行学习和推理
  • 批准号:
    1663870
  • 财政年份:
    2016
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant
Geometry and Dynamics in Low Dimensional Topology
低维拓扑中的几何和动力学
  • 批准号:
    1607512
  • 财政年份:
    2016
  • 资助金额:
    $ 45.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了