SGER ACT: Stochastic Shape Analysis for Recognizing and Tracking Objects in Images and Videos
SGER ACT:用于识别和跟踪图像和视频中的对象的随机形状分析
基本信息
- 批准号:0345242
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imaging devices have become ubiquitous tools of surveillance of public areas, remote locations, areas of restricted access, and other sites where additional security is needed. The detailed analysis of collected images can provide invaluable information about people, objects, their characteristics and patterns of behavior. Thus, combined with other strategies, image analysis can contribute significantly to the prevention of terrorism and national security. However, the execution of this task poses challenging problems due to the vast amount of imagery generated by surveillance devices. To make this task feasible, advanced automated systems are needed to screen images and route to human operators only material that is very likely to contain relevant information. The proposed interdisciplinary research addresses problems on the interface of shape and digital image analysis, whose solutions will contribute to the implementation of such intelligent surveillance systems, and will be useful in numerous other applications. Images contain information about two main attributes of objects: their shapes and textures. The proposers will develop a novel framework to represent and analyze planar shapes quantitatively using methods and tools of differential geometry, differential topology, and statistics. Statistical texture analysis and synthesis will be combined with the study of shapes to produce finer models of imaged objects. New algorithms of shape and image analysis will be developed, implemented, and applied to: (a) the detection and recognition of objects in noisy images; (b) tracking dynamic shapes possibly subject to occlusions in video sequences; (c) the organization of large databases of shapes for efficient retrieval and processing of information. Current techniques of algorithmic shape analysis are somewhat limited in scope or performance: some represent shapes using coarse collections of landmarks whose selection may be difficult to automate, and some involve heavy computational costs. Computational efficiency issues also limit the use of existing methods of image analysis; in spite of the remarkable success that methods based on partial differential equations have had in many applications, computational costs associated with typical implementations are high and the performance is not adequate for applications in video surveillance. There is a pressing need for efficient, robust algorithms that can analyze, process, and simulate the dynamics of shapes of continuous closed curves. The main idea proposed here is the use of computational stochastic differential geometry to study shapes, i.e., the algorithmic analysis of differential geometric representations of continuous curves in a statistical framework. The proposers will: (i) analyze closed shapes by representing them as elements of infinite-dimensional Riemannian manifolds via their angle or curvature functions; (ii) develop geometry-based tools for statistical inference problems on shape spaces; (iii) derive techniques for nonlinear filtering and tracking of shapes in infinite-dimensional shape manifolds; (iv) study completions of contours and textures with the goal of discovering hidden geometric features that follow an observable pattern; (v) implement algorithms and apply them to the solution of problems in shape and image analysis. The key new element in this approach is the use of the geometry of spaces of curves to study shapes, not only the geometry of individual curves. Results originating from this research may have far-reaching implications in shape, image and video analysis. The proposed algorithmic approach to shapes has the potential to set a new paradigm for the treatment of curve evolution. The team has expertise in the areas of differential geometry and topology, statistics, computing, and image analysis. This grouping reflects the interdisciplinary nature of the proposed investigation and will further enhance the atmosphere of collaborative research that exists among the PIs and their graduate students. Moreover, the applications to be investigated will contribute to the education and involvement of more students in areas related to national security. The PIs will continue to develop and offer courses and seminars from the introductory to the advanced levels targeting a broad audience of science students with the goal of increasing the overall impact of this line of research. To encourage the participation of undergraduates and students from underrepresented groups, motivated students will have full access to the Florida State University Laboratory of Computational Vision, where a hands-on learning environment will allow them to explore the area with their own experiments. To disseminate research results the proposers will continue to publish articles in well-circulated journals, post results in various electronic preprint archives, produce multimedia presentations on CD-ROMs, write introductory articles in magazines or handbooks, and present results at regional, national and international conferences.This award is supported jointly by the NSF and the Intelligence Community. The Approaches to Combat Terrorism Program in the Directorate for Mathematical and Physical Sciences supports new concepts in basic research and workforce development with the potential to contribute to national security.
成像设备已经成为监视公共区域、远程位置、限制访问的区域以及需要额外安全性的其他场所的无处不在的工具。对收集到的图像进行详细分析可以提供关于人、物体、其特征和行为模式的宝贵信息。因此,图像分析与其他战略相结合,可大大有助于防止恐怖主义和国家安全。然而,由于监视设备生成的大量图像,执行这项任务带来了挑战性的问题。为了使这项任务可行,需要先进的自动化系统来筛选图像,并仅将极有可能包含相关信息的材料发送给人类操作员。拟议的跨学科研究解决了形状和数字图像分析的接口上的问题,其解决方案将有助于实现这样的智能监控系统,并将在许多其他应用中是有用的。图像包含关于对象的两个主要属性的信息:它们的形状和纹理。提案人将开发一个新的框架来表示和分析平面形状定量使用微分几何,微分拓扑学和统计学的方法和工具。统计纹理分析和合成将与形状研究相结合,以产生成像物体的更精细模型。新的算法的形状和图像分析将开发,实施,并应用于:(a)在嘈杂的图像中的对象的检测和识别;(B)跟踪动态形状可能受到视频序列中的遮挡;(c)组织的大型数据库的形状的有效检索和信息处理。目前的算法形状分析技术在范围或性能上有些限制:一些表示形状使用粗略的地标集合,其选择可能难以自动化,并且一些涉及沉重的计算成本。计算效率问题也限制了现有的图像分析方法的使用;尽管基于偏微分方程的方法在许多应用中取得了显着的成功,但与典型实现相关的计算成本很高,并且性能不足以用于视频监控中的应用。有一个迫切需要的有效的,强大的算法,可以分析,处理和模拟连续闭合曲线的形状的动力学。这里提出的主要思想是使用计算随机微分几何来研究形状,即,在统计框架内对连续曲线的微分几何表示的算法分析。提议者将:(i)分析封闭形状,通过它们的角度或曲率函数将它们表示为无限维黎曼流形的元素;(ii)开发用于形状空间上的统计推断问题的基于几何的工具;(iii)导出用于非线性过滤和跟踪无限维形状流形中的形状的技术; ㈣研究轮廓和纹理的完整性,目的是发现遵循可观察模式的隐藏几何特征;(v)实施算法并将其应用于形状和图像分析问题的解决方案。在这种方法中的关键新元素是使用曲线空间的几何来研究形状,而不仅仅是单个曲线的几何。这项研究的结果可能对形状,图像和视频分析产生深远的影响。所提出的算法方法的形状有可能设置一个新的范例治疗曲线的演变。该团队在微分几何和拓扑学、统计学、计算和图像分析领域拥有专业知识。这一分组反映了拟议调查的跨学科性质,并将进一步加强PI及其研究生之间存在的合作研究的气氛。此外,有待调查的申请将有助于教育更多的学生,使他们参与与国家安全有关的领域。PI将继续开发和提供从入门到高级的课程和研讨会,目标是增加这一研究领域的整体影响。为了鼓励本科生和来自代表性不足群体的学生的参与,有动力的学生将有充分的机会进入佛罗里达州立大学计算视觉实验室,在那里一个动手的学习环境将允许他们探索自己的实验领域。为了传播研究成果,建议者将继续在发行量很大的期刊上发表文章,在各种电子预印本档案中发布结果,在CD-ROM上制作多媒体演示文稿,在杂志或手册上撰写介绍性文章,并在地区,国家和国际会议上展示结果。该奖项由NSF和情报界共同支持。数学和物理科学局的打击恐怖主义方案支持基础研究和劳动力发展方面的新概念,这些概念有可能促进国家安全。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Washington Mio其他文献
Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape
- DOI:
10.1007/s11692-015-9321-z - 发表时间:
2015-04-22 - 期刊:
- 影响因子:1.700
- 作者:
Qiuping Xu;Heather Jamniczky;Diane Hu;Rebecca M. Green;Ralph S. Marcucio;Benedikt Hallgrimsson;Washington Mio - 通讯作者:
Washington Mio
Self-linking invariants of embeddings in the metastable range
- DOI:
10.1007/bf01456199 - 发表时间:
1987-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Derek Hacon;Washington Mio - 通讯作者:
Washington Mio
Washington Mio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Washington Mio', 18)}}的其他基金
Collaborative Research: The Topology of Functional Data on Random Metric Spaces, Graphs and Graphons
协作研究:随机度量空间、图和图子上函数数据的拓扑
- 批准号:
1722995 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Methods for Parsing Shapes and Networks and Modeling Variation in Structure and Function
合作研究:解析形状和网络以及建模结构和功能变化的拓扑方法
- 批准号:
1418007 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Innovation: Breaking through the taxonomic barrier of the fossil pollen record using bioimage informatics
合作研究:ABI创新:利用生物图像信息学突破化石花粉记录的分类障碍
- 批准号:
1262351 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Biological Shape Spaces, Transforming Shape into Knowledge
合作研究:生物形状空间,将形状转化为知识
- 批准号:
1052942 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Novel Computational Methods for the Analysis, Synthesis and Simulation of Shapes of Surfaces
曲面形状分析、合成和模拟的新计算方法
- 批准号:
0713012 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Algorithmic Riemannian Geometry for a Statistical Analysis of Images
用于图像统计分析的算法黎曼几何
- 批准号:
0514743 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology of Generalized Manifolds
数学科学:广义流形的拓扑
- 批准号:
9626624 - 财政年份:1996
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
热休克蛋白HSP90α乳酸化修饰通过
ACT1/STAT3/HMGB1通路对糖尿病创面愈
合的调控及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Act A/Smad2介导Mfn2调控小胶质细胞极化研究针刺对脑出血的神经保护机制
- 批准号:82374570
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于Apelin信号通路研究低频PEMF磁刺激对缺氧ACT血管再生的影响机制
- 批准号:CSTB2023NSCQ-MSX0938
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
催化苦楝素骨架关键C3/C12乙酰化ACT基因挖掘及催化机制研究
- 批准号:32300327
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
静脉动脉体外膜肺氧合(VA-ECMO)参照不同活化凝血时间(ACT)标准进行抗凝的有效性和安全性研究
- 批准号:2023JJ60269
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
OCDC疫苗通过诱导新抗原特异性免疫改善新抗原特异性T细胞筛选效率、提高ACT治疗效果的机制研究
- 批准号:82203033
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Act1-SHP2复合物介导IL-17R信号自激活与炎症慢性化的机制及其药物靶向
- 批准号:82230116
- 批准年份:2022
- 资助金额:262 万元
- 项目类别:重点项目
柑橘褐斑病菌转录因子AaSom1调控ACT毒素合成的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
移动网络化ACT干预PTSD的效果、心理及神经机制与机器学习最优匹配
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
激活素A(Act A)在细胞移植治疗新生鼠脑白质损伤中的作用和机制
- 批准号:82171710
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
実装研究を用いた国内でのACTの地域精神医療現場への実装の促進要因/阻害要因の検証
使用实施研究验证在日本社区精神卫生保健机构中促进/阻碍 ACT 实施的因素
- 批准号:
24K13325 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ACT使用薬剤に対する多剤耐性原虫からの新規耐性遺伝子同定
多重耐药原虫对 ACT 药物的新耐药基因的鉴定
- 批准号:
23K27401 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Assessing the non-local Climate impacts of Tropical deforestation (ACT)
评估热带森林砍伐对非本地气候的影响 (ACT)
- 批准号:
NE/Z00005X/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
計算論に基づくACT-Rの好奇心のモデル:計算論レベルとアルゴリズムレベルの接続
基于计算理论的ACT-R好奇心模型:计算层面与算法层面的联系
- 批准号:
24KJ1215 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for JSPS Fellows
INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
- 批准号:
10102226 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
Hydrogen Integration for Accelerated Energy Transitions Hub (HI-ACT)
氢能加速能源转型中心 (HI-ACT)
- 批准号:
EP/X038823/2 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
ACT of intelligence: Applied Category Theory for higher cognitive development
智力 ACT:更高认知发展的应用范畴论
- 批准号:
23K11797 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
難治性慢性疼痛のマインドフルネスからACTへ段階的治療によるQOL改善への介入法の構築
通过从正念到ACT的逐步治疗顽固性慢性疼痛,建立改善生活质量的干预方法
- 批准号:
23K08385 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Historical study of systems and techniques for abortion under the Eugenic Protection Act
《优生保护法》下堕胎系统和技术的历史研究
- 批准号:
22KJ3040 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A postcode lottery of SEND provision? Analysing and explaining variability in the education of children with SEND since the Children and Families Act
SEND 规定的邮政编码抽奖?
- 批准号:
ES/X001431/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Research Grant