Algorithmic Riemannian Geometry for a Statistical Analysis of Images
用于图像统计分析的算法黎曼几何
基本信息
- 批准号:0514743
- 负责人:
- 金额:$ 30.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ALGORITHMIC RIEMANNIAN GEOMETRY FOR A STATISTICALANALYSIS OF IMAGESAbstractThis project is concerned with the investigation of novel algorithmic representations of images and geometrical signal processing techniques for the automated analysis of image content. The investigators develop a new framework for an appearance-based analysis of imaged objects in terms of their shapes and textures using methods and tools derived from differential geometry and statistics. A statistical formulation is of the essence due to the large variability of shapes and textures frequently encountered in imagery of interest. The use of differential geometric methods in image processing is still incipient, but very promising, as solid evidence exists that such methodology is particularly well suited for the study of multidimensional, nonlinear features such as shapes and textures.In recent years, the investigators have developed a statistical shape analysis program; shapes are viewed as elements of a shape space whose geometry is exploited for shape analysis. The investigators treat textures in a similar manner by creating a Riemannian manifold of textures and integrate both representations into a single shape-texture model for the algorithmic analysis of image content. Images are decomposed into their spectral components and local spectral histograms are treated as elements of an infinite-dimensional statistical manifold equipped with a geometric structure induced by non-parametric Fisher information. Differential geometric constructs are utilized to develop algorithms for: (i) statistical inferences and learning of shape-texture features; (ii) Bayesian detection and recognition of objects using shape-texture priors; (iii) dimensionality reduction techniques for efficient processing.
图像统计分析的算法黎曼几何摘要这个项目关注的是研究图像的新算法表示和用于图像内容自动分析的几何信号处理技术。 研究人员开发了一个新的框架,用于使用微分几何和统计学中的方法和工具对成像对象的形状和纹理进行基于外观的分析。 由于感兴趣的图像中经常遇到的形状和纹理的变化很大,统计公式是至关重要的。 微分几何方法在图像处理中的应用尚处于起步阶段,但前景广阔,因为有确凿的证据表明,这种方法特别适合于研究多维非线性特征,如形状和纹理,近年来,研究人员已经开发出一种统计形状分析程序,形状被视为形状空间的元素,其几何形状被用于形状分析。 研究人员通过创建纹理的黎曼流形以类似的方式处理纹理,并将两种表示集成到单个形状纹理模型中,用于图像内容的算法分析。 图像被分解成它们的光谱分量和局部谱直方图被视为一个无限维的统计流形的元素配备了由非参数Fisher信息引起的几何结构。 微分几何构造用于开发以下算法:(i)形状纹理特征的统计推断和学习;(ii)使用形状纹理先验知识进行物体的贝叶斯检测和识别;(iii)用于高效处理的降维技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Washington Mio其他文献
Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape
- DOI:
10.1007/s11692-015-9321-z - 发表时间:
2015-04-22 - 期刊:
- 影响因子:1.700
- 作者:
Qiuping Xu;Heather Jamniczky;Diane Hu;Rebecca M. Green;Ralph S. Marcucio;Benedikt Hallgrimsson;Washington Mio - 通讯作者:
Washington Mio
Self-linking invariants of embeddings in the metastable range
- DOI:
10.1007/bf01456199 - 发表时间:
1987-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Derek Hacon;Washington Mio - 通讯作者:
Washington Mio
Washington Mio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Washington Mio', 18)}}的其他基金
Collaborative Research: The Topology of Functional Data on Random Metric Spaces, Graphs and Graphons
协作研究:随机度量空间、图和图子上函数数据的拓扑
- 批准号:
1722995 - 财政年份:2017
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Methods for Parsing Shapes and Networks and Modeling Variation in Structure and Function
合作研究:解析形状和网络以及建模结构和功能变化的拓扑方法
- 批准号:
1418007 - 财政年份:2014
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Innovation: Breaking through the taxonomic barrier of the fossil pollen record using bioimage informatics
合作研究:ABI创新:利用生物图像信息学突破化石花粉记录的分类障碍
- 批准号:
1262351 - 财政年份:2013
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Collaborative Research: Biological Shape Spaces, Transforming Shape into Knowledge
合作研究:生物形状空间,将形状转化为知识
- 批准号:
1052942 - 财政年份:2010
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Novel Computational Methods for the Analysis, Synthesis and Simulation of Shapes of Surfaces
曲面形状分析、合成和模拟的新计算方法
- 批准号:
0713012 - 财政年份:2007
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
SGER ACT: Stochastic Shape Analysis for Recognizing and Tracking Objects in Images and Videos
SGER ACT:用于识别和跟踪图像和视频中的对象的随机形状分析
- 批准号:
0345242 - 财政年份:2003
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology of Generalized Manifolds
数学科学:广义流形的拓扑
- 批准号:
9626624 - 财政年份:1996
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
相似海外基金
Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
- 批准号:
2246817 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Volume-collapsed manifolds in Riemannian geometry and geometric inference
黎曼几何中的体积塌陷流形和几何推理
- 批准号:
MR/W01176X/1 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Fellowship
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
571975-2022 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Rethinking Dynamic Wireless Networks through the Lens of Riemannian Geometry
职业:通过黎曼几何的视角重新思考动态无线网络
- 批准号:
2144297 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Discovery Grants Program - Individual
Minimal Filling Estimates in Riemannian Geometry
黎曼几何中的最小填充估计
- 批准号:
567948-2022 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Postgraduate Scholarships - Doctoral
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Discovery Grants Program - Individual
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
- 批准号:
561794-2021 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
University Undergraduate Student Research Awards
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
- 批准号:
RGPIN-2020-04225 - 财政年份:2021
- 资助金额:
$ 30.04万 - 项目类别:
Discovery Grants Program - Individual