Mathematical Sciences: The Topology of Generalized Manifolds
数学科学:广义流形的拓扑
基本信息
- 批准号:9626624
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-15 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9626624 Mio Topological n-manifolds are separable metric spaces that are locally homeomorphic to euclidean n-space. They occur ubiquitously in mathematics and its applications and are among the most important objects of study in all of mathematics. Their most observable topological properties are that of being finite dimensional, locally contractible, having the local homology of euclidean n-space, and allowing nicely embedded subspaces to be put in general position. A space is called a generalized n-manifold if it satisfies all of these properties, except possibly the last. If in addition, n is at least 5 and X allows general position, X is said to satisfy the disjoint disks property (DDP). The long standing conjecture that a generalized n-manifold X having the DDP must be a topological manifold was disproved recently by the investigators in joint work with S. C. Ferry and Shmuel Weinberger. Among the most significant questions that remain concerning generalized manifolds and that are the subject of this project is the question of whether generalized manifolds are topologically homogeneous. Other goals are to establish other structure theorems for DDP generalized manifolds that are known to hold for topological manifolds, such as the s-cobordism theorem, various splitting theorems, and regular neighborhood theorems. Splitting theorems, in particular, would be useful in attacking the conjecture that the pathology exhibited by generalized manifolds resides in dimension 4. It has been quite a shock for topologists to learn that n-dimensional manifolds are not characterized by a small collection of their most obvious properties, as had been conjectured. Since these spaces are the most heavily used in mathematics, it is highly desirable to understand this phenomenon better. The two co-investigators, who were among the four who dispatched the conjecture several years ago, are now intent on doing just this. As mentioned above, they will attempt to le arn whether, like ordinary topological manifolds, generalized manifolds exhibit the same topological structure in the vicinity of each of their points. The interest of these spaces arises from their potential as models for several phenomena observed in the study of dynamical systems, geometric group theory, and other areas, but lack of such homogeneity would seriously limit this potential. ***
9626624 Mio拓扑n流形是局部同纯欧氏n空间的可分离度量空间。它们在数学及其应用中无处不在,是所有数学中最重要的研究对象之一。它们最明显的拓扑性质是有限维的,局部可收缩的,具有欧氏n空间的局部同调,并允许嵌入的子空间被放置在一般位置。如果一个空间满足所有这些性质,那么它就被称为广义n流形,除了最后一个。另外,如果n至少为5,且X允许一般位置,则称X满足不相交磁盘属性(DDP)。具有DDP的广义n流形X一定是拓扑流形这一长期存在的猜想最近被研究人员与S. C. Ferry和Shmuel Weinberger联合证明是错误的。关于广义流形的最重要的问题之一是广义流形是否拓扑齐次,这也是本课题的主题。其他目标是为DDP广义流形建立其他结构定理,这些定理已知适用于拓扑流形,例如s协定理、各种分裂定理和正则邻域定理。特别是分裂定理,在驳斥广义流形所表现出的病态存在于4维的猜想时将是有用的。对于拓扑学家来说,了解到n维流形并不是像之前猜测的那样由它们最明显的性质的一小部分集合来表征的,这是相当震惊的。由于这些空间在数学中使用最多,因此非常希望更好地理解这一现象。这两名共同调查人员是几年前提出这一猜想的四人之一,他们现在正打算这样做。如上所述,他们将试图了解广义流形是否像普通拓扑流形一样,在其每个点的附近表现出相同的拓扑结构。这些空间的兴趣源于它们作为动力系统、几何群论和其他领域研究中观察到的几种现象的模型的潜力,但缺乏这种同质性将严重限制这种潜力。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Washington Mio其他文献
Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape
- DOI:
10.1007/s11692-015-9321-z - 发表时间:
2015-04-22 - 期刊:
- 影响因子:1.700
- 作者:
Qiuping Xu;Heather Jamniczky;Diane Hu;Rebecca M. Green;Ralph S. Marcucio;Benedikt Hallgrimsson;Washington Mio - 通讯作者:
Washington Mio
Self-linking invariants of embeddings in the metastable range
- DOI:
10.1007/bf01456199 - 发表时间:
1987-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Derek Hacon;Washington Mio - 通讯作者:
Washington Mio
Washington Mio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Washington Mio', 18)}}的其他基金
Collaborative Research: The Topology of Functional Data on Random Metric Spaces, Graphs and Graphons
协作研究:随机度量空间、图和图子上函数数据的拓扑
- 批准号:
1722995 - 财政年份:2017
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Methods for Parsing Shapes and Networks and Modeling Variation in Structure and Function
合作研究:解析形状和网络以及建模结构和功能变化的拓扑方法
- 批准号:
1418007 - 财政年份:2014
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Innovation: Breaking through the taxonomic barrier of the fossil pollen record using bioimage informatics
合作研究:ABI创新:利用生物图像信息学突破化石花粉记录的分类障碍
- 批准号:
1262351 - 财政年份:2013
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
Collaborative Research: Biological Shape Spaces, Transforming Shape into Knowledge
合作研究:生物形状空间,将形状转化为知识
- 批准号:
1052942 - 财政年份:2010
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Novel Computational Methods for the Analysis, Synthesis and Simulation of Shapes of Surfaces
曲面形状分析、合成和模拟的新计算方法
- 批准号:
0713012 - 财政年份:2007
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
Algorithmic Riemannian Geometry for a Statistical Analysis of Images
用于图像统计分析的算法黎曼几何
- 批准号:
0514743 - 财政年份:2005
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
SGER ACT: Stochastic Shape Analysis for Recognizing and Tracking Objects in Images and Videos
SGER ACT:用于识别和跟踪图像和视频中的对象的随机形状分析
- 批准号:
0345242 - 财政年份:2003
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
- 批准号:
1608194 - 财政年份:2016
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Topology Conferences at the Pacific Institute for the Mathematical Sciences
太平洋数学科学研究所的拓扑会议
- 批准号:
1506202 - 财政年份:2015
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences: Algebraic Topology in Applied Mathematics; Summer 2009, Cleveland, OH
CBMS 数学科学区域会议:应用数学中的代数拓扑;
- 批准号:
0834140 - 财政年份:2009
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Topology, C*- algebras, and String Duality, June 2008
NSF/CBMS 数学科学区域会议:拓扑、C*- 代数和弦对偶性,2008 年 6 月
- 批准号:
0735233 - 财政年份:2008
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
0196235 - 财政年份:2000
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
9996368 - 财政年份:1998
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9896376 - 财政年份:1998
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Low-Dimensional Topology in Group Theory
数学科学:群论中的几何和低维拓扑
- 批准号:
9703756 - 财政年份:1997
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Low-Dimensional Geometry and Topology
数学科学:低维几何和拓扑
- 批准号:
9704135 - 财政年份:1997
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: The 1997 Spring Topology and Dynamics Conference
数学科学:1997 年春季拓扑与动力学会议
- 批准号:
9614982 - 财政年份:1997
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant














{{item.name}}会员




