Novel Computational Methods for the Analysis, Synthesis and Simulation of Shapes of Surfaces
曲面形状分析、合成和模拟的新计算方法
基本信息
- 批准号:0713012
- 负责人:
- 金额:$ 65.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of this project is to develop novel computational models and strategies to analyze the shapes of spherical surfaces in Euclidean 3-space. In recent years, there has been a substantial progress in the computational study of shapes of curves with methodology based on the geometry of infinite-dimensional spaces of curves. However, attempts to extend these approaches to surfaces have encountered tall obstacles. In this project, an effective computational solution is proposed that encompasses all fundamental aspects of the problem. Shape spaces will be constructed equipped with geodesic metrics, which will provide a natural environment for the quantitative study of shapes of surfaces. A full set of computational tools will be designed and implemented to quantify shape similarity and divergence, to develop statistical models from samples, to synthesize shapes from learned models, and to analyze and simulate shape dynamics. Techniques will be developed to convert a noisy point-cloud representation of a surface of genus zero to a minimum-distortion parametrization over the standard sphere. Alignment algorithms will be designed to best match the geometric features of surfaces and to extract optimal parametrizations for modeling a family of shapes. Riemannian metrics inherited from weighted Sobolev spaces will capture geometric similarities and discrepancies between shapes to any desired order. The project will focus on first-order metrics, as they offer a good balance between geometric accuracy and robustness for computations. Due to the typical complexity of the geometry of surfaces, many algorithms will employ a coarse-to-fine approach both for the processing of point clouds and triangular meshes. Localization of spherical shapes in the frequency or spatio-temporal domains will also be employed for statistical modeling and to achieve computational efficiency.The proposed research on shapes and forms of 3D objects is motivated by a series of problems arising in areas such as computer vision, medical imaging, and computational biology. Shape is a key attribute associated with patterns arising in geometric data and its effective computational representation and analysis will have an impact on application domains such as the recognition of objects or targets from various modalities of images, modeling brain anatomy and functions, the simulation of biological growth and motion, and anatomical changes associated with diseases and aging. As such, the proponents will make the tools of shape modeling and analysis developed under this project available to the broader research community and will also actively pursue collaborations with researchers in these areas.
该项目的主要目标是开发新的计算模型和策略来分析欧几里得三维空间中球面的形状。近年来,基于无限维曲线空间几何的曲线形状计算研究取得了长足的进展。然而,将这些方法扩展到表面的尝试遇到了巨大的障碍。在这个项目中,提出了一个有效的计算解决方案,涵盖了问题的所有基本方面。形状空间的构建将配备测地线度量,这将为表面形状的定量研究提供自然环境。一套完整的计算工具将被设计和实现来量化形状的相似性和差异,从样本中开发统计模型,从学习模型中合成形状,并分析和模拟形状动力学。技术将被开发,以转换一个噪声点云表示的曲面属零到一个最小失真的参数化在标准球。对齐算法将被设计为最好地匹配表面的几何特征,并提取最优参数来建模一系列形状。从加权Sobolev空间继承的黎曼度量将捕捉形状之间任意顺序的几何相似性和差异。该项目将侧重于一阶度量,因为它们在几何精度和计算鲁棒性之间提供了很好的平衡。由于曲面几何的典型复杂性,许多算法将采用从粗到精的方法来处理点云和三角形网格。在频率或时空域的球形定位也将用于统计建模和实现计算效率。提出对三维物体的形状和形式的研究是由计算机视觉、医学成像和计算生物学等领域出现的一系列问题所驱动的。形状是与几何数据中产生的模式相关的关键属性,其有效的计算表示和分析将对应用领域产生影响,例如从各种图像模式中识别物体或目标,建模大脑解剖和功能,模拟生物生长和运动,以及与疾病和衰老相关的解剖变化。因此,支持者将使该项目下开发的形状建模和分析工具可供更广泛的研究团体使用,并将积极寻求与这些领域的研究人员合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Washington Mio其他文献
Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape
- DOI:
10.1007/s11692-015-9321-z - 发表时间:
2015-04-22 - 期刊:
- 影响因子:1.700
- 作者:
Qiuping Xu;Heather Jamniczky;Diane Hu;Rebecca M. Green;Ralph S. Marcucio;Benedikt Hallgrimsson;Washington Mio - 通讯作者:
Washington Mio
Self-linking invariants of embeddings in the metastable range
- DOI:
10.1007/bf01456199 - 发表时间:
1987-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Derek Hacon;Washington Mio - 通讯作者:
Washington Mio
Washington Mio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Washington Mio', 18)}}的其他基金
Collaborative Research: The Topology of Functional Data on Random Metric Spaces, Graphs and Graphons
协作研究:随机度量空间、图和图子上函数数据的拓扑
- 批准号:
1722995 - 财政年份:2017
- 资助金额:
$ 65.6万 - 项目类别:
Continuing Grant
Collaborative Research: Topological Methods for Parsing Shapes and Networks and Modeling Variation in Structure and Function
合作研究:解析形状和网络以及建模结构和功能变化的拓扑方法
- 批准号:
1418007 - 财政年份:2014
- 资助金额:
$ 65.6万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Innovation: Breaking through the taxonomic barrier of the fossil pollen record using bioimage informatics
合作研究:ABI创新:利用生物图像信息学突破化石花粉记录的分类障碍
- 批准号:
1262351 - 财政年份:2013
- 资助金额:
$ 65.6万 - 项目类别:
Continuing Grant
Collaborative Research: Biological Shape Spaces, Transforming Shape into Knowledge
合作研究:生物形状空间,将形状转化为知识
- 批准号:
1052942 - 财政年份:2010
- 资助金额:
$ 65.6万 - 项目类别:
Standard Grant
Algorithmic Riemannian Geometry for a Statistical Analysis of Images
用于图像统计分析的算法黎曼几何
- 批准号:
0514743 - 财政年份:2005
- 资助金额:
$ 65.6万 - 项目类别:
Standard Grant
SGER ACT: Stochastic Shape Analysis for Recognizing and Tracking Objects in Images and Videos
SGER ACT:用于识别和跟踪图像和视频中的对象的随机形状分析
- 批准号:
0345242 - 财政年份:2003
- 资助金额:
$ 65.6万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology of Generalized Manifolds
数学科学:广义流形的拓扑
- 批准号:
9626624 - 财政年份:1996
- 资助金额:
$ 65.6万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 65.6万 - 项目类别:
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
- 批准号:
2317172 - 财政年份:2023
- 资助金额:
$ 65.6万 - 项目类别:
Standard Grant
Novel methods for integrative computational biology
综合计算生物学的新方法
- 批准号:
RGPIN-2018-05757 - 财政年份:2022
- 资助金额:
$ 65.6万 - 项目类别:
Discovery Grants Program - Individual
Generation of single cell multi omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
- 批准号:
BB/X511389/1 - 财政年份:2022
- 资助金额:
$ 65.6万 - 项目类别:
Training Grant
Generation of single cell multi-omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
- 批准号:
2764861 - 财政年份:2022
- 资助金额:
$ 65.6万 - 项目类别:
Studentship
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
- 批准号:
RGPIN-2019-04973 - 财政年份:2022
- 资助金额:
$ 65.6万 - 项目类别:
Discovery Grants Program - Individual
Designing and synthesising new classes of phosphatase inhibitor using novel computational methods
使用新颖的计算方法设计和合成新型磷酸酶抑制剂
- 批准号:
2627865 - 财政年份:2021
- 资助金额:
$ 65.6万 - 项目类别:
Studentship
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
- 批准号:
RGPIN-2019-04973 - 财政年份:2021
- 资助金额:
$ 65.6万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
- 批准号:
2045550 - 财政年份:2021
- 资助金额:
$ 65.6万 - 项目类别:
Continuing Grant
Novel methods for integrative computational biology
综合计算生物学的新方法
- 批准号:
RGPIN-2018-05757 - 财政年份:2021
- 资助金额:
$ 65.6万 - 项目类别:
Discovery Grants Program - Individual