CAREER: Exploring the Complexity Limits of Joint Data Detection and Channel Estimation: Exact, Polynomial-Complexity Solutions and Ultra-Fast Approximations

职业:探索联合数据检测和信道估计的复杂性极限:精确、多项式复杂性解决方案和超快速近似

基本信息

项目摘要

Future communication systems will be required to operate very close totheir theoretical limits and achieve high performance with limitedresources (e.g., bandwidth, energy, complexity). In order to realizethese goals, the receiver of a communication system should be able todecode the digital data in the presence of channel uncertainty (e.g.,unknown channel quality, interference, etc.). The current state ofknowledge regarding the complexity of these receivers is that theircomplexity grows exponentially with the sequence length. This isunacceptable when practical implementation of these algorithms is ofinterest. A number of fundamental questions thus arise: (i) Howaccurate is the conventional wisdom that complexity growsexponentially with the sequence length? (ii) What is the impact ofthe above question on the design of near-optimal, approximatealgorithms suited for ultra-fast integrated circuit implementation?(iii) How can the complexity/performance tradeoff of these approximatealgorithms be analyzed, and how can it be improved?This research addresses the aforementioned fundamental questionsusing a novel approach in looking at the problem of joint datadetection and channel estimation, consisting of two main thrusts: (a)On the theoretical front, the current state of knowledge is challenged,by investigating a broad class of communication scenarios for whichthe exact solution can be obtained with only polynomial complexity.(b) Utilizing the constructive proofs of the aforementioned statements,a family of novel receivers is investigated with near-optimalperformance, linear complexity, and moreover, algorithmic structurethat is suitable for high-speed hardware implementation.
未来的通信系统将被要求非常接近它们的理论极限来操作,并且利用有限的资源(例如,带宽、能量、复杂度)。为了实现这些目标,通信系统的接收机应该能够在存在信道不确定性的情况下(例如,未知的信道质量、干扰等)。关于这些接收器的复杂性的当前知识状态是它们的复杂性随着序列长度呈指数增长。这是不可接受的,当这些算法的实际实现是ofintest。因此出现了一些基本的问题:(1)传统的智慧,复杂性增长与序列长度呈指数增长是多么准确? (ii)上述问题对设计适用于超快集成电路实现的接近最优的近似算法有什么影响?(iii)如何分析这些近似算法的复杂性/性能权衡,以及如何改进它?本研究解决了上述基本问题,使用一种新的方法来看待联合数据检测和信道估计的问题,包括两个主要的推力:(a)在理论方面,目前的知识状态受到挑战,通过调查广泛的一类通信场景,可以获得精确的解决方案,只有多项式的复杂性。(b)利用上述陈述的建设性证明,一个家庭的新颖的接收机进行了研究,接近最优的性能,线性复杂度,而且,算法结构,这是适合于高速硬件实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Achilleas Anastasopoulos其他文献

Using Graphics Processing Units in an LTE Base Station

Achilleas Anastasopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Achilleas Anastasopoulos', 18)}}的其他基金

Collaborative Research: Distributed Mechanism Design with Learning Guarantees: Resource Allocation among Networked Strategic Agents
协作研究:具有学习保证的分布式机制设计:网络化战略代理之间的资源分配
  • 批准号:
    2015191
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A control-theoretic framework for analysis and design of networked systems with strategic agents via structured strategies
通过结构化策略分析和设计具有策略代理的网络系统的控制理论框架
  • 批准号:
    1608361
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
ITR: Design of Novel Receiver Algorithms for OFDM Incorporating Realistic Indoor Channel Modeling
ITR:结合现实室内信道建模的新型 OFDM 接收器算法设计
  • 批准号:
    0219531
  • 财政年份:
    2002
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring Changing Fertility Intentions in China
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Narrating Complexity: Exploring Multi-Actor Timelines
叙述复杂性:探索多参与者时间线
  • 批准号:
    EP/V028871/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Exploring Ultracold Matter Along the Complexity Axis
沿着复杂性轴探索超冷物质
  • 批准号:
    2110327
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Exploring the limits of behavioral complexity in rats: a novel experimental approach via reinforcement learning and information theory
探索大鼠行为复杂性的极限:通过强化学习和信息论的新颖实验方法
  • 批准号:
    442068558
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Fellowships
Exploring complexity and scalability of Near-term Quantum Computing algorithms for Quantum Chemistry
探索量子化学近期量子计算算法的复杂性和可扩展性
  • 批准号:
    2468302
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
From Structure to Complexity: Exploring the Relationship Between History and International Relations Theory through the Falklands & Iraq Conflicts
从结构到复杂性:通过马岛探索历史与国际关系理论的关系
  • 批准号:
    2386749
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Exploring Ultracold Matter Along the Complexity Axis
沿着复杂性轴探索超冷物质
  • 批准号:
    1806971
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: Exploring Machine Learning and Atmospheric Simulation to Understand the Role of Geomorphic Complexity in Enhancing Civil Infrastructure Damage during Extreme Wind Events
EAGER:探索机器学习和大气模拟,以了解地貌复杂性在加剧极端风事件期间民用基础设施损坏方面的作用
  • 批准号:
    1841979
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Exploring Endosymbiont Biodiversity and Complexity in the Family Cicadidae
探索蝉科内共生生物多样性和复杂性
  • 批准号:
    1655891
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Exploring Biological Evidence: Helping Students Understand the Richness and Complexity of Evidentiary Constructs in Biology
探索生物证据:帮助学生理解生物学证据结构的丰富性和复杂性
  • 批准号:
    1661124
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Workshop: Exploring the Complexity of the Contributions of Research Universities to Society
研讨会:探索研究型大学对社会贡献的复杂性
  • 批准号:
    1551958
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了