CAREER: Machine Learning Based Intelligent Image Annotation and Retrieval
职业:基于机器学习的智能图像注释和检索
基本信息
- 批准号:0347148
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this CAREER project is to develop an interdisciplinary research and education program for investigating the underlying theoretical and computational principles of machine-learning-based image annotation and retrieval. The novel research approach uses an automated learning-based image annotation method using a 3D-Hidden Markov Model (HDD) stochastic model that directly uses pixel level data as opposed to using the results of a segmentation algorithm. Using low-level features to learn high-level semantics is an important step towards automatic annotation of images. The research of this project focuses on three areas: (1) developing highly efficient machine learning mechanisms for imagery data, (2) developing models for high-dimensional imagery, and (3) developing a learning-based image annotation and retrieval system. This research will fundamentally improve image annotation technologies. This advance will provide theoretical understanding to the problem of managing and interpreting imagery data. The results of this research will also have impacts beyond pattern recognition for image databases. Many of these results can also be applied to other machine learning and data mining problems. This research will gain deeper insights into the principles of image understanding and annotation, and will ultimately contribute to the creation of intelligent and robust multimedia information systems. The educational plan includes developing interdisciplinary curriculum, and promoting diversity in the students' participation in this project. The scientific results of the research will enhance computer technology for recognizing objects and scenes with direct applications in online information management, homeland security, the military, and many scientific applications, including healthcare. Scientific publications and the project Web site http://riemann.ist.psu.edu will be used for the research results dissemination.
这个CAREER项目的目标是开发一个跨学科的研究和教育计划,以研究基于机器学习的图像注释和检索的基本理论和计算原理。这种新的研究方法使用了一种基于自动学习的图像注释方法,该方法使用3D隐马尔可夫模型(HDD)随机模型,该模型直接使用像素级数据,而不是使用分割算法的结果。使用低级特征学习高级语义是实现图像自动标注的重要一步。该项目的研究重点集中在三个方面:(1)开发高效的图像数据机器学习机制,(2)开发高维图像模型,(3)开发基于学习的图像标注和检索系统。该研究将从根本上改进图像标注技术。这一进展将为管理和解释图像数据的问题提供理论上的理解。这项研究的结果还将对图像数据库的模式识别产生影响。其中许多结果也可以应用于其他机器学习和数据挖掘问题。这项研究将获得更深入的了解图像理解和注释的原则,并最终将有助于创建智能和强大的多媒体信息系统。教育计划包括制定跨学科课程,促进学生参与该项目的多样性。该研究的科学成果将增强识别对象和场景的计算机技术,直接应用于在线信息管理,国土安全,军事和许多科学应用,包括医疗保健。科学出版物和项目网站http://riemann.ist.psu.edu将用于传播研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael McNeese其他文献
Michael McNeese的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
- 批准号:
2340075 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




