Last Passage Percolation and Random Matrix
最后一段渗透和随机矩阵
基本信息
- 批准号:0350729
- 负责人:
- 金额:$ 6.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Jinho Baik, Princeton UniversityDMS-0208557This project is about the longest increasing subsequence problems incombinatorics, which can also be interpreted as last passage percolation problems inprobability/statistical mechanics. We consider a maximal passage time in a 2-dimensional lattice with a random time assigned at each lattice site. The basic interest is the probabilistic properties of the maximal passage time as the size of lattice becomes large. Other equivalent forms of questions include a card game, random growth models in 2-dimension, interacting particle systems, queuing theory, directed polymersand so-called ``vicious'' random walks. Recent progresses show that there areinteresting connections of this field to the random matrix theory. Random matrix theory has been an active field of research in both mathematics and physics for last 50 years. We would like to understand more on this connection and also investigate further relations between these seemingly different fields. This project is a further work in this direction.From a greater framework, the subject of this project can be regarded as a work on the basic properties of a maximization process in a random environment when the size of system becomes large. Such process could be growth of crystal, shape of fire front of paper burning, or fastest passage in a computer or cellular network. These problems are also subjects in statistics, statistical physics, and engineering. One of the main goal of this project is an investigation of various universal properties, which are independent of the microstructure of the models, of a class of systems when the size of model becomes large.
主要研究者:Jinho Baik,Princeton UniversityDMS-0208557本项目是关于组合数学中的最长递增子序列问题,它也可以被解释为概率/统计力学中的最后一次通过渗流问题。我们考虑一个在每个格点上随机分配时间的二维格点上的最大通过时间。基本的兴趣是最大通过时间的概率性质,随着格的大小变得很大。其他等价形式的问题包括纸牌游戏,二维随机增长模型,相互作用粒子系统,排队论,定向聚合物和所谓的“恶意”随机漫步。近年来的研究表明,该领域与随机矩阵理论之间存在着有趣的联系。随机矩阵理论是近50年来数学和物理学中的一个活跃的研究领域。我们想更多地了解这种联系,并进一步研究这些看似不同的领域之间的关系。本课题是在这一方向上的进一步工作,从更大的框架上看,本课题可以看作是研究随机环境下系统规模变大时极大化过程的基本性质的工作。这种过程可以是晶体的生长,纸张燃烧的火锋形状,或者计算机或蜂窝网络中的最快通道。这些问题也是统计学、统计物理学和工程学的主题。本项目的主要目标之一是研究一类系统在模型规模变大时的各种与模型微观结构无关的普适性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinho Baik其他文献
Correction to: Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model with Ferromagnetic Interaction
- DOI:
10.1007/s00023-017-0613-y - 发表时间:
2017-10-25 - 期刊:
- 影响因子:1.300
- 作者:
Jinho Baik;Ji Oon Lee - 通讯作者:
Ji Oon Lee
T. (2020). The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov–Shabat system. Annals of Applied Probability, 30(1), 460-501.
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
On the Christoffel-Darboux Kernel for Random Hermitian Matrices with External Source
- DOI:
10.1007/bf03321740 - 发表时间:
2009-02-08 - 期刊:
- 影响因子:0.700
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
A Fredholm Determinant Identity and the Convergence of Moments for Random Young Tableaux
- DOI:
10.1007/s002200100555 - 发表时间:
2001-11-01 - 期刊:
- 影响因子:2.600
- 作者:
Jinho Baik;Percy Deift;Eric Rains - 通讯作者:
Eric Rains
Jinho Baik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinho Baik', 18)}}的其他基金
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
- 批准号:
2246790 - 财政年份:2023
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant
The 2020 Summer School on Random Matrices
2020 年随机矩阵暑期学校
- 批准号:
1951530 - 财政年份:2020
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
- 批准号:
1954790 - 财政年份:2020
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664531 - 财政年份:2017
- 资助金额:
$ 6.01万 - 项目类别:
Continuing Grant
Asymptotics in Integrable Systems, Random Matrices and Random Processes, and Universality
可积系统中的渐进性、随机矩阵和随机过程以及普适性
- 批准号:
1500141 - 财政年份:2015
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant
Some Aspects of Random Matrices and Integrable Systems
随机矩阵和可积系统的一些方面
- 批准号:
0757709 - 财政年份:2008
- 资助金额:
$ 6.01万 - 项目类别:
Continuing Grant
相似海外基金
Limiting Shape of First-Passage Percolation
限制第一通道渗透的形状
- 批准号:
1954059 - 财政年份:2021
- 资助金额:
$ 6.01万 - 项目类别:
Continuing Grant
First Passage Percolation and Related Models
第一通道渗滤及相关模型
- 批准号:
2002388 - 财政年份:2020
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant
First Passage Percolation
第一通道渗透
- 批准号:
502369-2017 - 财政年份:2019
- 资助金额:
$ 6.01万 - 项目类别:
Postgraduate Scholarships - Doctoral
First Passage Percolation
第一通道渗透
- 批准号:
502369-2017 - 财政年份:2018
- 资助金额:
$ 6.01万 - 项目类别:
Postgraduate Scholarships - Doctoral
The flat edge in last passage percolation
最后一段渗透的平坦边缘
- 批准号:
EP/P021409/1 - 财政年份:2017
- 资助金额:
$ 6.01万 - 项目类别:
Research Grant
First Passage Percolation
第一通道渗透
- 批准号:
502369-2017 - 财政年份:2017
- 资助金额:
$ 6.01万 - 项目类别:
Postgraduate Scholarships - Doctoral
Last Passage Percolation and Random Matrix
最后一段渗透和随机矩阵
- 批准号:
0208557 - 财政年份:2002
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant
RUI: First-passage Percolation and Other Disordered Systems
RUI:第一通道渗滤和其他无序系统
- 批准号:
0203943 - 财政年份:2002
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant
Studies in First-Passage Percolation and Random Walks with Scenery
第一通道渗透和风景随机行走研究
- 批准号:
9815226 - 财政年份:1998
- 资助金额:
$ 6.01万 - 项目类别:
Standard Grant