Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
基本信息
- 批准号:2246790
- 负责人:
- 金额:$ 40.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is about how sometimes complex and random interactions between the constituents in a large probabilistic system may lead to simple and universal behaviors. Here universality means that these properties are attained for a large class of such systems. A few concrete classes of probabilistic models and their fundamental properties will be investigated, especially when the system sizes become large. This project will help improve our understanding of the scopes and limitations of the universality of probability models. Many parts of the project will be carried out with graduate students and young researchers, helping their professional development. In concrete terms, the Kardar-Parisi-Zhang (KPZ) universality class models will be studied as well as their connections to integrable differential equations, and spin glass models. Of particular interest will be the multi-time distributions of KPZ universality class models on the ring domain, to understand and broaden the relations between the KPZ models and integrable differential equations, and to study the fluctuations of the spherical Sherrington-Kirkpatrick model perturbed by a deterministic field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是关于在一个大的概率系统中,成分之间复杂和随机的相互作用如何导致简单和普遍的行为。在这里,普适性意味着这些性质是为一大类这样的系统所获得的。一些具体的类的概率模型和它们的基本属性将被调查,特别是当系统的规模变得很大。这个项目将有助于提高我们对概率模型普适性的范围和局限性的理解。该项目的许多部分将与研究生和年轻研究人员一起进行,帮助他们的专业发展。具体而言,Kardar-Parisi-Zhang(KPZ)普适类模型将被研究,以及它们与可积微分方程和自旋玻璃模型的联系。特别感兴趣的是KPZ普适类模型在环域上的多时间分布,以理解和拓宽KPZ模型与可积微分方程之间的关系,并研究球面谢灵顿的波动该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinho Baik其他文献
Correction to: Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model with Ferromagnetic Interaction
- DOI:
10.1007/s00023-017-0613-y - 发表时间:
2017-10-25 - 期刊:
- 影响因子:1.300
- 作者:
Jinho Baik;Ji Oon Lee - 通讯作者:
Ji Oon Lee
T. (2020). The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov–Shabat system. Annals of Applied Probability, 30(1), 460-501.
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
On the Christoffel-Darboux Kernel for Random Hermitian Matrices with External Source
- DOI:
10.1007/bf03321740 - 发表时间:
2009-02-08 - 期刊:
- 影响因子:0.700
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
A Fredholm Determinant Identity and the Convergence of Moments for Random Young Tableaux
- DOI:
10.1007/s002200100555 - 发表时间:
2001-11-01 - 期刊:
- 影响因子:2.600
- 作者:
Jinho Baik;Percy Deift;Eric Rains - 通讯作者:
Eric Rains
Jinho Baik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinho Baik', 18)}}的其他基金
The 2020 Summer School on Random Matrices
2020 年随机矩阵暑期学校
- 批准号:
1951530 - 财政年份:2020
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
- 批准号:
1954790 - 财政年份:2020
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664531 - 财政年份:2017
- 资助金额:
$ 40.87万 - 项目类别:
Continuing Grant
Asymptotics in Integrable Systems, Random Matrices and Random Processes, and Universality
可积系统中的渐进性、随机矩阵和随机过程以及普适性
- 批准号:
1500141 - 财政年份:2015
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Some Aspects of Random Matrices and Integrable Systems
随机矩阵和可积系统的一些方面
- 批准号:
0757709 - 财政年份:2008
- 资助金额:
$ 40.87万 - 项目类别:
Continuing Grant
Last Passage Percolation and Random Matrix
最后一段渗透和随机矩阵
- 批准号:
0350729 - 财政年份:2003
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
相似海外基金
The Kardar-Parisi-Zhang (KPZ) Universality of Random Growing Interfaces
随机增长界面的 Kardar-Parisi-Zhang (KPZ) 普遍性
- 批准号:
2321493 - 财政年份:2023
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Kardar-Parisi-Zhang universality for large scale interacting systems
大规模交互系统的 Kardar-Parisi-Zhang 通用性
- 批准号:
22KJ0874 - 财政年份:2023
- 资助金额:
$ 40.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
古典系・量子系におけるKardar-Parisi-Zhang普遍法則の統一的理解の構築
建立对经典和量子系统中卡达尔-帕里西-张普遍定律的统一理解
- 批准号:
23K17664 - 财政年份:2023
- 资助金额:
$ 40.87万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Periodic Kardar-Parisi-Zhang (KPZ) Universality
周期性 Kardar-Parisi-Zhang (KPZ) 普遍性
- 批准号:
1953687 - 财政年份:2020
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
The Kardar-Parisi-Zhang (KPZ) Universality of Random Growing Interfaces
随机增长界面的 Kardar-Parisi-Zhang (KPZ) 普遍性
- 批准号:
1953859 - 财政年份:2020
- 资助金额:
$ 40.87万 - 项目类别:
Standard Grant
Career: Various Geometric Aspects of Kardar-Parisi-Zhang Universality: Fractal Dimensions, Noise Sensitivity, Line Ensembles, and Large Deviations.
职业:Kardar-Parisi-Zhang 普遍性的各个几何方面:分形维数、噪声敏感性、线系综和大偏差。
- 批准号:
1945172 - 财政年份:2020
- 资助金额:
$ 40.87万 - 项目类别:
Continuing Grant
Structures and universalities around the Kardar-Parisi-Zhang equation
Kardar-Parisi-Zhang 方程的结构和普适性
- 批准号:
EP/R024456/1 - 财政年份:2018
- 资助金额:
$ 40.87万 - 项目类别:
Fellowship
Random polymers and the Kardar-Parisi-Zhang universality class
无规聚合物和 Kardar-Parisi-Zhang 通用类
- 批准号:
502287-2017 - 财政年份:2018
- 资助金额:
$ 40.87万 - 项目类别:
Postdoctoral Fellowships
Random polymers and the Kardar-Parisi-Zhang universality class
无规聚合物和 Kardar-Parisi-Zhang 通用类
- 批准号:
502287-2017 - 财政年份:2017
- 资助金额:
$ 40.87万 - 项目类别:
Postdoctoral Fellowships
The Kardar-Parisi-Zhang equation and universality class
Kardar-Parisi-Zhang 方程和普适性类
- 批准号:
203087-2012 - 财政年份:2016
- 资助金额:
$ 40.87万 - 项目类别:
Discovery Grants Program - Individual