Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
基本信息
- 批准号:1954790
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many physical phenomena are modeled as particles interacting randomly. Moving cars in one-lane traffic are one of such examples. Sometimes the interactions of the particles in a small area have a lasting influence on the far away location over time. It is of great interest to find out how fast such influence spreads. This project is concerned with some of the fundamental questions on the spread of local random interactions on a global scale for a class of random processes. The project provides research training opportunities for both undergraduate and graduate students.In more concrete terms, the investigator will perform research on spin glass, interacting particle systems, and random growth models with a focus on the fluctuations of large systems. In particular, the investigator will study the free energy and overlaps of the two-spin spherical Sherrington-Kirkpatrick model with critically-tuned external field, the random field for periodic KPZ universality class, and also the last passage time for a class of directed percolation models. There are deep connections to random matrix theory which the investigator will utilize and also expand. The exactly solvable nature of the models will also be used in the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理现象被模拟为粒子随机相互作用。在单车道交通中移动汽车就是这样的例子之一。有时候,小区域内粒子的相互作用会随着时间的推移对远处的位置产生持久的影响。了解这种影响的传播速度是非常有趣的。这个项目关注的是一类随机过程的局部随机相互作用在全球范围内的传播的一些基本问题。该项目为本科生和研究生提供研究培训机会。更具体地说,研究人员将对自旋玻璃、相互作用粒子系统和随机增长模型进行研究,重点关注大系统的波动。特别地,研究者将研究具有临界调谐外场的双自旋球形Sherrington-Kirkpatrick模型的自由能和重叠,周期KPZ普适类的随机场,以及一类定向渗流模型的最后通过时间。有深刻的联系,以随机矩阵理论,调查人员将利用,也扩大。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spherical Spin Glass Model with External Field
- DOI:10.1007/s10955-021-02757-7
- 发表时间:2020-10
- 期刊:
- 影响因子:1.6
- 作者:J. Baik;Elizabeth Collins-Woodfin;P. Le Doussal;Hao Wu
- 通讯作者:J. Baik;Elizabeth Collins-Woodfin;P. Le Doussal;Hao Wu
Limiting one-point distribution of periodic TASEP
周期性 TASEP 的限制单点分布
- DOI:10.1214/21-aihp1171
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Baik, Jinho;Liu, Zhipeng;Silva, Guilherme L.
- 通讯作者:Silva, Guilherme L.
Edge Distribution of Thinned Real Eigenvalues in the Real Ginibre Ensemble
- DOI:10.1007/s00023-022-01182-0
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:J. Baik;Thomas Bothner
- 通讯作者:J. Baik;Thomas Bothner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinho Baik其他文献
Correction to: Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model with Ferromagnetic Interaction
- DOI:
10.1007/s00023-017-0613-y - 发表时间:
2017-10-25 - 期刊:
- 影响因子:1.300
- 作者:
Jinho Baik;Ji Oon Lee - 通讯作者:
Ji Oon Lee
T. (2020). The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov–Shabat system. Annals of Applied Probability, 30(1), 460-501.
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
On the Christoffel-Darboux Kernel for Random Hermitian Matrices with External Source
- DOI:
10.1007/bf03321740 - 发表时间:
2009-02-08 - 期刊:
- 影响因子:0.700
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
A Fredholm Determinant Identity and the Convergence of Moments for Random Young Tableaux
- DOI:
10.1007/s002200100555 - 发表时间:
2001-11-01 - 期刊:
- 影响因子:2.600
- 作者:
Jinho Baik;Percy Deift;Eric Rains - 通讯作者:
Eric Rains
Jinho Baik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinho Baik', 18)}}的其他基金
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
- 批准号:
2246790 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
The 2020 Summer School on Random Matrices
2020 年随机矩阵暑期学校
- 批准号:
1951530 - 财政年份:2020
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664531 - 财政年份:2017
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Asymptotics in Integrable Systems, Random Matrices and Random Processes, and Universality
可积系统中的渐进性、随机矩阵和随机过程以及普适性
- 批准号:
1500141 - 财政年份:2015
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Some Aspects of Random Matrices and Integrable Systems
随机矩阵和可积系统的一些方面
- 批准号:
0757709 - 财政年份:2008
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Last Passage Percolation and Random Matrix
最后一段渗透和随机矩阵
- 批准号:
0350729 - 财政年份:2003
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
相似海外基金
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
- 批准号:
MR/Y033760/1 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
- 批准号:
2414497 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
- 批准号:
BB/Y007514/1 - 财政年份:2024
- 资助金额:
$ 34.51万 - 项目类别:
Research Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
- 批准号:
2331037 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
- 批准号:
2331096 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Fellowship