Asymptotics in Integrable Systems, Random Matrices and Random Processes, and Universality
可积系统中的渐进性、随机矩阵和随机过程以及普适性
基本信息
- 批准号:1500141
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports U.S. participation in the workshop "Asymptotics in Integrable Systems, Random Matrices and Random Processes, and Universality" held at the Centre de Recherches Mathematiques (CRM), Montreal, during June 7-11, 2015. In recent years there have been several important developments in the study of certain equations describing the motion of waves as well as of large time or large system-size randomly interacting systems (such as the spread of bacterial colonies or the interactions between many electrically charged particles). The mathematical methods underlying these developments have surprising commonalities. This workshop will feature presentations by over two dozen experts in these diverse fields to present their recent research results and discuss directions of future efforts. About 25 more participants are expected to be present, including many researchers in their early careers. The workshop aims to advance the field and also to help the young researchers to identify important and promising new research directions. The topics of workshop include integrable systems, random matrices andrandom processes, and their possible novel applications. These three areas have benefited from each other over the last two decades. In recent years all of them have seen new significant developments. This workshop aims to foster the exchange of these new ideas and developments by bringing together experts in these three areas to discuss progress and challenges.Workshop web site: www.crm.umontreal.ca/2015/Deift15/index_e.php
该奖项支持美国参加2015年6月7日至11日在蒙特利尔数学研究中心(CRM)举行的研讨会“可积系统,随机矩阵和随机过程中的渐近性和普遍性”。近年来,在研究某些描述波运动的方程以及大时间或大系统尺寸的随机相互作用系统(如细菌菌落的传播或许多带电粒子之间的相互作用)方面,有了几个重要的发展。 这些发展背后的数学方法有着惊人的共性。本次研讨会将由这些不同领域的二十多位专家进行演讲,介绍他们最近的研究成果,并讨论未来的努力方向。预计将有大约25名参与者出席,其中包括许多早期职业生涯的研究人员。该研讨会旨在推动该领域的发展,并帮助年轻的研究人员确定重要和有前途的新研究方向。研讨会的主题包括可积系统、随机矩阵和随机过程,以及它们可能的新应用。这三个领域在过去二十年中相互受益。近年来,所有这些都有了新的重大发展。这次讲习班的目的是通过将这三个领域的专家聚集在一起讨论进展和挑战,促进交流这些新的想法和发展。www.crm.umontreal.ca/2015/Deift15/index_e.php
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinho Baik其他文献
Correction to: Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model with Ferromagnetic Interaction
- DOI:
10.1007/s00023-017-0613-y - 发表时间:
2017-10-25 - 期刊:
- 影响因子:1.300
- 作者:
Jinho Baik;Ji Oon Lee - 通讯作者:
Ji Oon Lee
T. (2020). The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov–Shabat system. Annals of Applied Probability, 30(1), 460-501.
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
On the Christoffel-Darboux Kernel for Random Hermitian Matrices with External Source
- DOI:
10.1007/bf03321740 - 发表时间:
2009-02-08 - 期刊:
- 影响因子:0.700
- 作者:
Jinho Baik - 通讯作者:
Jinho Baik
A Fredholm Determinant Identity and the Convergence of Moments for Random Young Tableaux
- DOI:
10.1007/s002200100555 - 发表时间:
2001-11-01 - 期刊:
- 影响因子:2.600
- 作者:
Jinho Baik;Percy Deift;Eric Rains - 通讯作者:
Eric Rains
Jinho Baik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinho Baik', 18)}}的其他基金
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
- 批准号:
2246790 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
The 2020 Summer School on Random Matrices
2020 年随机矩阵暑期学校
- 批准号:
1951530 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
- 批准号:
1954790 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664531 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Some Aspects of Random Matrices and Integrable Systems
随机矩阵和可积系统的一些方面
- 批准号:
0757709 - 财政年份:2008
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Last Passage Percolation and Random Matrix
最后一段渗透和随机矩阵
- 批准号:
0350729 - 财政年份:2003
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2016
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Long-time asymptotics of completely integrable systems with connections to random matrices and partial differential equations
职业:与随机矩阵和偏微分方程相关的完全可积系统的长时间渐近
- 批准号:
1150427 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Spectral asymptotics for quantum integrable systems
量子可积系统的谱渐近
- 批准号:
170280-2005 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Spectral asymptotics for quantum integrable systems
量子可积系统的谱渐近
- 批准号:
170280-2005 - 财政年份:2008
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Spectral asymptotics for quantum integrable systems
量子可积系统的谱渐近
- 批准号:
170280-2005 - 财政年份:2007
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual