Understanding Arctic Surface Climate Simulation Errors

了解北极表面气候模拟错误

基本信息

  • 批准号:
    0354545
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-05-01 至 2009-10-31
  • 项目状态:
    已结题

项目摘要

This project addresses which processes maintain the observed Arctic surface weather patterns, especially low level wind and sea level pressure; which processes are key to Arctic surface climate error, and how these processes might be improved in model simulations. The work plan describes the analyses of observed and modeled climatologies to determine both local (the distribution of radiation, temperature, low level cloud cover, and surface properties) and remote (middle latitude frontal cyclone activity, planetary waves, and topography-related issues) mechanisms that influence the distribution of Arctic sea-level pressure and winds, with a view to establishing the surface climate response. A sequence of models will be employed to identify which fields are the primary contributors to existing analysis errors. The model runs are expected to identify how these errors develop and to test model modifications. This research is expected to benefit the climate modeling community by reducing model uncertainties, and benefit the wider public by enhancing our knowledge of climate change issues in the Arctic region and their related global implications. Two graduate students will be supported by this project.
该项目讨论了哪些过程维持了观测到的北极地面天气模式,特别是低空风和海平面气压;哪些过程是北极地面气候误差的关键,以及如何在模型模拟中改进这些过程。该工作计划描述了对观测和模拟气候学的分析,以确定影响北极海平面气压和风分布的本地机制(辐射、温度、低空云量分布和地表特性)和远程机制(中纬度锋面气旋活动、行星波和与地形有关的问题),从而确定地表气候响应。将采用一系列模型来确定哪些字段是现有分析错误的主要贡献者。预计模型运行将确定这些错误是如何发展的,并测试模型修改。这项研究有望通过减少模型的不确定性使气候建模界受益,并通过提高我们对北极地区气候变化问题及其相关全球影响的认识使更广泛的公众受益。该项目将资助两名研究生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Grotjahn其他文献

Identifying extreme hottest days from large scale upper air data: a pilot scheme to find California Central Valley summertime maximum surface temperatures
  • DOI:
    10.1007/s00382-011-0999-z
  • 发表时间:
    2011-02-08
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Richard Grotjahn
  • 通讯作者:
    Richard Grotjahn
North American extreme precipitation events and related large-scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends
  • DOI:
    10.1007/s00382-019-04958-z
  • 发表时间:
    2019-09-20
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Mathew Barlow;William J. Gutowski;John R. Gyakum;Richard W. Katz;Young-Kwon Lim;Russ S. Schumacher;Michael F. Wehner;Laurie Agel;Michael Bosilovich;Allison Collow;Alexander Gershunov;Richard Grotjahn;Ruby Leung;Shawn Milrad;Seung-Ki Min
  • 通讯作者:
    Seung-Ki Min
North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends
  • DOI:
    10.1007/s00382-015-2638-6
  • 发表时间:
    2015-05-22
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Richard Grotjahn;Robert Black;Ruby Leung;Michael F. Wehner;Mathew Barlow;Mike Bosilovich;Alexander Gershunov;William J. Gutowski;John R. Gyakum;Richard W. Katz;Yun-Young Lee;Young-Kwon Lim;Prabhat
  • 通讯作者:
    Prabhat

Richard Grotjahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Grotjahn', 18)}}的其他基金

Large Scale Dynamics and Statistics of California Extreme Weather in the Atmosphere and in Global Models
大气和全球模型中加州极端天气的大尺度动力学和统计
  • 批准号:
    1236681
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Higher-order Properties of Extratropical Cyclones in Models and Observations
模型和观测中温带气旋的高阶特性
  • 批准号:
    9615316
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modelling Surface Temperature and Topographic Effects on Atmospheric Eddies
模拟表面温度和地形对大气涡流的影响
  • 批准号:
    8606267
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Instability and Time-Mean Studies of the Atmosphere
大气的不稳定性和时均研究
  • 批准号:
    8305091
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球Polar和Arctic环流变化对中高纬度气候异常的影响
  • 批准号:
    41775067
  • 批准年份:
    2017
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目

相似海外基金

Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
  • 批准号:
    NE/W00089X/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A novel proxy for Arctic sea surface temperatures (PAST)
北极海面温度(过去)的新型代理
  • 批准号:
    NE/X009416/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Size distribution of dissolved organic matter in Arctic surface waters
北极地表水中溶解有机物的尺寸分布
  • 批准号:
    574232-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
EAGER: Collaborative Research: Autonomous retrieval of impurity-laden Arctic sea ice and hyperspectral surface properties through innovative robotics
EAGER:合作研究:通过创新机器人技术自主检索充满杂质的北极海冰和高光谱表面特性
  • 批准号:
    2218834
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
  • 批准号:
    NE/W00089X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
EAGER: Collaborative Research: Autonomous retrieval of impurity-laden Arctic sea ice and hyperspectral surface properties through innovative robotics
EAGER:合作研究:通过创新机器人技术自主检索充满杂质的北极海冰和高光谱表面特性
  • 批准号:
    2218835
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Remote Sensing of Arctic Surface Water Under Amplified Climate Warming: A "Big Earth Data" Approach
气候变暖加剧下的北极地表水遥感:“地球大数据”方法
  • 批准号:
    565889-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Research expedition to measure surface water chemistry in the Pacific and Arctic Oceans
测量太平洋和北冰洋地表水化学的研究考察
  • 批准号:
    564376-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Surface-based Canadian microwave Scatterometer measurements (CanScats) during the MOSAiC International Arctic drift expedition
MOSAiC 国际北极漂移探险期间基于地基的加拿大微波散射仪测量 (CanScats)
  • 批准号:
    531434-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Ship Time
Estimation of snow melting incluiding the effect of red snow blooming in arctic region using a land surface model
使用地表模型估计北极地区的融雪,包括红雪绽放的影响
  • 批准号:
    20K19955
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了