Investigating Fundamental Quantum Limits of Nonlinear Susceptibilities and Devices
研究非线性磁化率和器件的基本量子极限
基本信息
- 批准号:0354736
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0354736KuzykAn understanding of the limits of the nonlinear-optical response of device materials will be developed at the most fundamental level. A combination of theory, experiments, and literature surveys will be used to tackle the problem. As a result, new paradigms will be developed that will provide researchers with recipes for making better device materials.The theoretical approach is to use sum rules to understand in very general terms those issues that are most important in making an optimized optical material. While details of the system are not important, certain key parameters such as the first two excited state energies and two or three transition moments are needed to test the validity of the approach. These will be determined with various linear and nonlinear spectroscopy experiments. Past studies by the PI show that there is a theoretical limit to the nonlinear susceptibility; and, that all molecules ever measured fall below this limit. Part of this proposal seeks to extend these calculations using sum rules of higher moments and using a non-truncated series to learn if there are perhaps higher limits for different kinds of systems that may be exploited. For example, previous work considered mostly the diagonal tensor components of the nonlinear susceptibilities. A large part of the theoretical aspects of this work will be to develop a full set of non-diagonal sum rules and apply them to three dimensional systems to determine if this may be a fruitful avenue for larger nonlinearities.A central theme of the theoretical studies will be to understand systems in which the nonlinear response can be amplified by using novel composite structures, such as metal intensifiers, quantum local field models, and symmetries in three dimensional molecules. While there is a separate large body of literature on each of these material concepts, the sum rules will provide guiding principles in putting together the pieces in the most optimal manner. Furthermore, for each technology, the sum rules will be used to calculate the limits of the appropriate device figure of merit.Experiments such as linear absorption spectroscopy, electroabsorption spectroscopy, and excited state fluorescence will be used to characterize the quantum states of the molecules, which will serve as a test of the validity of the calculations on the microscopic level. In addition to new molecules produced in collaboration with other researchers, known molecules will be characterized with our measurement techniques and theory. This set of results will be applied to determine which molecule attributes have the largest impact on the nonlinear response.(1) Intellectual Merit: Using a mix of experiments and theory, this proposal applies very fundamental concepts of quantum mechanics to understand the performance limit of optical device materials. The proposed studies will guide chemists in designing new materials, provide new paradigms for physicists/materials scientists in making new structures, and engineers to develop novel devices. It should be stressed that the sum rules apply to all materials. While the focus is on organics because of the vast number of materials that can be engineered, this research will also impact inorganic systems.(2) Broader impact: Washington State University is located at the border of Eastern Washington and Western Idaho. This is a rural area with economically disadvantaged residents, Indian Reservations (the nearest two are the Nez Perce and the Coeur D'Alene reservations), as well as children of migrant farm laborers with a large proportion of Latinos, Native Americans, and other under-represented groups. These will be the groups targeted by the outreach program. Students and teachers will be exposed to this research; and, software will be provided to the schools so that they can participate in data analysis. As far as technical breadth, the fundamental science proposed underlies a broad range of optical technologies and all material classes. Areas impacted include telecommunications, computing, displays, memory, and sensors - any applications that operate based on light interacting with a material.This award is jointly supported by the Division of Electrical and Communications Systems and the Office of International Science and Engineering.
0354736 KuzykAn的设备材料的非线性光学响应的限制的理解将在最基本的水平。 本文将采用理论、实验和文献调查相结合的方法来解决这一问题。 因此,新的范例将被开发,这将为研究人员提供更好的器件材料的配方。理论方法是使用求和规则来理解在制造优化的光学材料中最重要的那些问题。 虽然系统的细节并不重要,但需要某些关键参数,如前两个激发态能量和两个或三个跃迁时刻来测试方法的有效性。 这些将通过各种线性和非线性光谱实验来确定。 PI过去的研究表明,非线性极化率有一个理论极限;并且,所有测量过的分子都低于这个极限。 该提案的一部分旨在使用高阶矩的求和规则和使用非截断序列来扩展这些计算,以了解可能被利用的不同类型的系统是否存在更高的极限。 例如,以前的工作主要考虑非线性极化率的对角张量分量。 这项工作的很大一部分理论方面将是开发一套完整的非对角求和规则,并将其应用于三维系统,以确定这是否可能是一个富有成效的途径,为更大的非线性。理论研究的一个中心主题将是理解系统,其中的非线性响应可以通过使用新的复合结构,如金属增强器,量子局域场模型,和三维分子的对称性。 虽然关于这些材料概念中的每一个都有大量单独的文献,但求和规则将为以最佳方式将各个部分组合在一起提供指导原则。 此外,针对每种技术,将使用求和规则计算相应器件优值的极限,并使用线性吸收光谱、电吸收光谱和激发态荧光等实验来表征分子的量子态,这将在微观水平上检验计算的有效性。 除了与其他研究人员合作产生的新分子外,已知分子将使用我们的测量技术和理论进行表征。 这组结果将用于确定哪些分子属性对非线性响应的影响最大。(1)智力优势:使用实验和理论的混合,该提案应用量子力学的非常基本的概念来理解光学器件材料的性能极限。 这些研究将指导化学家设计新材料,为物理学家/材料科学家制造新结构提供新的范例,并为工程师开发新器件提供新的范例。 应该强调的是,求和规则适用于所有材料。 虽然由于可以设计大量材料,因此重点是有机物,但这项研究也将影响无机系统。(2)更广泛的影响:华盛顿州立大学位于东部华盛顿和西部爱达荷州的边界。 这是一个农村地区,有经济上处于不利地位的居民,印第安人保留地(最近的两个是内兹珀斯和科达伦保留地),以及移民农场工人的子女,其中大部分是拉丁美洲人,美洲原住民和其他代表性不足的群体。 这些将是推广计划的目标群体。 学生和教师将接触这项研究,并将向学校提供软件,使他们能够参与数据分析。 就技术广度而言,所提出的基础科学是广泛的光学技术和所有材料类别的基础。 受影响的领域包括电信、计算、显示器、存储器和传感器--任何基于光与材料相互作用的应用。该奖项由电气和通信系统部门以及国际科学和工程办公室共同支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Kuzyk其他文献
Mark Kuzyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Kuzyk', 18)}}的其他基金
EFRI-ODISSEI: Photomorphon networks: Intelligent shape changing structures
EFRI-ODISSEI:光形态网络:智能形状变化结构
- 批准号:
1332271 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
QMHS Targeted optimization of the dispersion of quantum wires and nanomaterials for nonlinear optical applications
QMHS 针对非线性光学应用的量子线和纳米材料的色散进行有针对性的优化
- 批准号:
1128076 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
QMHP - Numerical Optimization of Molecular and Nano-Scale Structures for Nonlinear-Optical Applications
QMHP - 非线性光学应用的分子和纳米级结构的数值优化
- 批准号:
0756936 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
International Conference on Organic Nonlinear Optics V to be held March 12-16, 2000 at Davos, Switzerland.
第五届有机非线性光学国际会议将于 2000 年 3 月 12-16 日在瑞士达沃斯举行。
- 批准号:
9988117 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Nonlinear Nano-Optics: An integrated Education and Research Program
职业:非线性纳米光学:综合教育和研究项目
- 批准号:
9875317 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
International Conference on Organic Nonlinear Optics IV, Hokkaido, Japan; October 12-15, 1998
第四届有机非线性光学国际会议,日本北海道;
- 批准号:
9802496 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: International Conference on Organic Nonlinear Optics III (Marco Island, Florida, December 16-20, 1996)
会议:有机非线性光学国际会议 III(佛罗里达州马可岛,1996 年 12 月 16-20 日)
- 批准号:
9625945 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: International Conference on Organic Nonlinear Optics II in Kusatsu, Gunma, Japan, July 23-26, 1995
会议:有机非线性光学国际会议 II,1995 年 7 月 23-26 日,日本群马草津
- 批准号:
9505314 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
BLOCK TRAVEL:INTERNATIONAL CONFERENCE ON ORGANIC NONLINEAR OPTICS I. TO BE HELD IN VAL THORENS, FRANCE, JANUARY, 9 - 13, 1994.
块旅行:有机非线性光学国际会议 I. 将于 1994 年 1 月 9 日至 13 日在法国 Val Thorens 举行。
- 批准号:
9305728 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop: Progress in Nonlinear-Optics: Organic and Polymeric Materials to be held on July 16-17, 1992 in San Diego.
研讨会:非线性光学进展:有机和聚合物材料将于 1992 年 7 月 16 日至 17 日在圣地亚哥举行。
- 批准号:
9204031 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
- 批准号:
2308969 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of fundamental technologies for III-V semiconductor membrane photonic integrated circuits using quantum well intermixing
利用量子阱混合开发III-V族半导体膜光子集成电路基础技术
- 批准号:
23H00172 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Construction of an innovative photoreaction fields that possess quantum coherent strong coupling and study of its fundamental principle
具有量子相干强耦合的创新光反应场的构建及其基本原理研究
- 批准号:
23H05464 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Optomechanics in the microwave regime for quantum technologies and fundamental sciences
量子技术和基础科学微波领域的光力学
- 批准号:
DGECR-2022-00128 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Ultrafast Quantum Photonics: From Fundamental Aspects to High-Tech Applications
超快量子光子学:从基础方面到高科技应用
- 批准号:
RGPIN-2017-06894 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
An optical frequency comb to support the quantum technology for fundamental physics programme
支持基础物理项目量子技术的光学频率梳
- 批准号:
ST/X005046/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
New quantum chemistry tools from a fundamental understanding of electronic structure
来自对电子结构的基本理解的新量子化学工具
- 批准号:
DDG-2020-00025 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Optomechanics in the microwave regime for quantum technologies and fundamental sciences
量子技术和基础科学微波领域的光力学
- 批准号:
RGPIN-2022-04435 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Fundamental analysis of Quantum sensing using non-classical intensity correlations
使用非经典强度相关性对量子传感进行基础分析
- 批准号:
580740-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants