RUI: Multivariate Calibration as a Harmonious and Parsimonious Problem

RUI:多元校准是一个和谐且简约的问题

基本信息

  • 批准号:
    0400034
  • 负责人:
  • 金额:
    $ 11.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

Professor John Kalivas of Idaho State University is funded for a statistical study aimed at improving, for example, quantitative structure activity relationships (QSAR) calculations, and analysis of spectroscopic data. These activities fall in the specialized field called "chemometrics." The idea is to develop multivariate calibration, which is of interest when the number of predictors exceeds the number of samples (pn, rather than the usual assumption np). The PI is using the regression vector LASSO (least absolute shrinkage and selection operator) and other norms (with constraints) to fit such data. Comparisons to other methods such as ridge regression, partial least squares and multiple linear regression, are being performed. The work is being done by undergraduate students using the program MATLAB. Collaboration with Dr. Karoly Heberger of the Central Research Institute for Chemistry of the Hungarian Academy of Sciences will extend the QSAR studies.This award is co-funded by the Analytical and Surface Chemistry program of the Chemistry Division and the Statistics program of the Division of Mathematical Sciences under the umbrella of the NSF-wide Mathematical Sciences Priority Area. Efficiency and effectiveness of data analysis is becoming increasingly important in all of the quantitative sciences, including biology. The integration of state of the art statistical methods within the natural science disciplines is required for advancement in these fields. Education of undergraduates in these advanced methods prepare them for any type of scientific professional pursuit.
爱达荷州州立大学的John Kalivas教授获得了一项统计研究的资助,该研究旨在改进定量结构活性关系(QSAR)计算和光谱数据分析等。 这些活动属于称为“化学计量学”的专门领域。“我们的想法是开发多变量校准,当预测因子的数量超过样本的数量(pn,而不是通常的假设np)时,这是有趣的。 PI使用回归向量LASSO(最小绝对收缩和选择算子)和其他范数(具有约束)来拟合这些数据。 与其他方法,如岭回归,偏最小二乘法和多元线性回归,正在进行比较。 这项工作是由本科生使用MATLAB程序完成的。 与匈牙利科学院化学中央研究所的Karoly Heberger博士合作将扩展QSAR研究。该奖项由化学部的分析和表面化学计划以及数学科学部的统计计划共同资助,该计划属于NSF范围内的数学科学优先领域。数据分析的效率和有效性在包括生物学在内的所有定量科学中变得越来越重要。 在自然科学学科的最先进的统计方法的整合是需要在这些领域的进步。 这些先进方法的本科生教育为他们从事任何类型的科学专业做好了准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kalivas其他文献

John Kalivas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kalivas', 18)}}的其他基金

CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
  • 批准号:
    2305020
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Standard Grant
CDS&E: Adaptive Learning for Multivariate Calibration with Big Data Attributes
CDS
  • 批准号:
    1904166
  • 财政年份:
    2019
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Standard Grant
CDS&E: Regularization Adaption Processes for Multivariate Calibration and Maintenance
CDS
  • 批准号:
    1506417
  • 财政年份:
    2015
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Continuing Grant
RUI: Dynamic Net Analyte Signal Modeling for Multivariate Calibration and Maintenance
RUI:用于多变量校准和维护的动态网络分析物信号建模
  • 批准号:
    1111053
  • 财政年份:
    2011
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Standard Grant
RUI: Harmonious and Parsimonious Considerations for Correcting New Chemical and Instrumental Effects and Calibration Transfer
RUI:校正新化学和仪器效应以及校准转移的和谐和简约考虑
  • 批准号:
    0715149
  • 财政年份:
    2007
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Standard Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
  • 批准号:
    2305020
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Standard Grant
Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
  • 批准号:
    EP/X010449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Research Grant
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
  • 批准号:
    2306672
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Continuing Grant
Development of non-invasive measurement and induction of multivariate sharp-wave ripples in the human brain
开发人脑多元尖波波纹的非侵入性测量和感应
  • 批准号:
    23K14679
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
  • 批准号:
    23K16854
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
  • 批准号:
    23K03283
  • 财政年份:
    2023
  • 资助金额:
    $ 11.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了