CDS&E: Adaptive Learning for Multivariate Calibration with Big Data Attributes

CDS

基本信息

  • 批准号:
    1904166
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging program in the Chemistry Division, and partial co-funding from the Office of Investigative and Forensic Sciences in the National Institute of Justice, Professor John Kalivas and his group at Idaho State University are developing new methods of data analysis with the target of solving complex calibration problems. Calibration is a multidisciplinary problem. In chemistry it involves forming a mathematical relationship between measured electronic signals derived from instrumental measurements and information of interest in a sample, such as the nitrogen content of plant leaves, percent fat in beef, or the blood glucose level. With the growth of the amount of generated and shared data, there is a need for a paradigm shift in calibration methods. The Kalivas group is devising means to exploit historical calibration data to improve the utility of new chemical measurements. A strategic feature of the approach is the development of new mathematical tools enabling adaptation of field-based measurements to new conditions and sample types without complex laboratory analyses, thereby reducing analysis time and costs. Through participation in this work, undergraduates from Idaho State University are learning state-of-the-art calibration methods and becoming proficient at scientific research, including dissemination. Because of the multidisciplinary nature of the project, outcomes directly benefit industry and society with efficient algorithms for rapid and accurate analysis of samples. This project exploits the increasing availability of spectral databases to develop completely new computational processes and accompany algorithms to address the growing need for improved and simplified multivariate calibration. The fundamentals of the inherent chemical and physical molecular interactions responsible for the measured signal are considered along with instrument-specific issues (conditions) to create new self- and cross-modeling data mining tools. Unlike conventional global and local modeling, the method does not require optimization of any tuning parameters. Additionally, reference values are not needed for target sample conditions; the method is therefore considered to be semi-supervised learning. A key goal of the project is to advance multivariate calibration to a "big-data" level, developing efficient algorithms to reveal useful information. Using reference databases, the data-mining algorithms identify samples best matrix-matched to new samples (one or many). Results from this project will advance multivariate calibration in a range of applications, including process analytical technology for the pharmaceutical and chemical industries, environmental and agriculture monitoring, and medical diagnostics. With the improvements contributed by this project, these fields will be better able to form and sustain calibrations on site, removing the need for complex chemical analysis. All developed algorithms will be posted to the Kalivas web site, allowing free access to potential users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学部化学测量和成像计划的支持下,以及国家司法研究所调查和法医科学办公室的部分共同资助下,爱达荷州立大学的约翰·卡利瓦斯教授和他的团队正在开发新的数据分析方法,目标是解决复杂的校准问题。校准是一个多学科的问题。在化学中,它涉及到在仪器测量得到的测量电子信号和样品中感兴趣的信息之间建立数学关系,如植物叶片的氮含量、牛肉中的脂肪百分比或血糖水平。随着生成和共享的数据量的增长,需要改变校准方法的范式。Kalivas小组正在设计一种方法,利用历史校准数据来提高新的化学测量的实用性。该方法的一个战略特点是开发新的数学工具,使实地测量能够适应新的条件和样本类型,而无需复杂的实验室分析,从而减少分析时间和成本。通过参与这项工作,爱达荷州立大学的本科生正在学习最先进的校准方法,并精通包括传播在内的科学研究。由于该项目的多学科性质,结果直接造福于行业和社会,具有快速和准确的样本分析的高效算法。该项目利用光谱数据库日益增长的可用性来开发全新的计算过程并伴随算法,以满足对改进和简化的多变量校正日益增长的需求。考虑了导致测量信号的内在化学和物理分子相互作用的基本原理以及仪器特定的问题(条件),以创建新的自我建模和交叉建模的数据挖掘工具。与传统的全局和局部建模不同,该方法不需要对任何调整参数进行优化。此外,对于目标样本条件,不需要参考值;因此,该方法被认为是半监督学习。该项目的一个关键目标是将多变量校准提升到“大数据”的水平,开发有效的算法来揭示有用的信息。使用参考数据库,数据挖掘算法识别与新样本(一个或多个)最匹配的样本。该项目的结果将推动多变量校准在一系列应用中的应用,包括制药和化学工业的过程分析技术、环境和农业监测以及医疗诊断。有了该项目的改进,这些领域将能够更好地形成和维持现场校准,消除了复杂的化学分析的需要。所有开发的算法都将发布在Kalivas网站上,允许潜在用户免费访问。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable Model Selection without Reference Values by Utilizing Model Diversity with Prediction Similarity
Physicochemical Responsive Integrated Similarity Measure (PRISM) for a Comprehensive Quantitative Perspective of Sample Similarity Dynamically Assessed with NIR Spectra
物理化学响应综合相似性测量 (PRISM),用于通过近红外光谱动态评估样品相似性的全面定量视角
  • DOI:
    10.1021/acs.analchem.3c01616
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Spiers, Robert C.;Norby, Callan;Kalivas, John H.
  • 通讯作者:
    Kalivas, John H.
Calibration Model Updating to Novel Sample and Measurement Conditions without Reference Values
校准模型更新为新样品和测量条件,无需参考值
  • DOI:
    10.1021/acs.analchem.1c00578
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Spiers, Robert C.;Kalivas, John H.
  • 通讯作者:
    Kalivas, John H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Kalivas其他文献

John Kalivas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Kalivas', 18)}}的其他基金

CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
  • 批准号:
    2305020
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CDS&E: Regularization Adaption Processes for Multivariate Calibration and Maintenance
CDS
  • 批准号:
    1506417
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
RUI: Dynamic Net Analyte Signal Modeling for Multivariate Calibration and Maintenance
RUI:用于多变量校准和维护的动态网络分析物信号建模
  • 批准号:
    1111053
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: Harmonious and Parsimonious Considerations for Correcting New Chemical and Instrumental Effects and Calibration Transfer
RUI:校正新化学和仪器效应以及校准转移的和谐和简约考虑
  • 批准号:
    0715149
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RUI: Multivariate Calibration as a Harmonious and Parsimonious Problem
RUI:多元校准是一个和谐且简约的问题
  • 批准号:
    0400034
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
  • 批准号:
    23K20186
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
  • 批准号:
    EP/Y002539/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
  • 批准号:
    2348279
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
  • 批准号:
    2336189
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
  • 批准号:
    2423762
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了