Quasiconformal Deformation of Self-similar Sets and Fatou Theorems for p-Laplacian

自相似集的拟共形变形和 p-拉普拉斯的 Fatou 定理

基本信息

  • 批准号:
    0400810
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

The proposed research deals with two important areas of analysis: quasiconformal deformation offractals and solutions of p-Laplace equations. Analysis on fractals has been actively pursued in recent years. Quasiconformal mappings, an intermediate class between homeomorphisms and diffeomorphisms, are natural candidates for deforming fractals. Mathematically, fractals appear as invariant sets of iterated function systems. This project provides conditions on the iterated function system under which these invariant sets are quasisymmetrically equivalent; conditions for extending such quasisymmetric homeomorphisms to global quasiconformal mappings; methods of lowering the Hausdorff dimension of self-similar fractals; and answers to related questions on more general sets. The PI, in collaboration with J. Tyson, has obtained conclusive results for Sierpinski gaskets, a special class of fractals. In nonlinear elasticity, solutions of p-Laplace equation minimize the total energy. When p is different from 2, due to the nonlinearity and degeneracy, the boundary behavior of solutions is still largely a mystery. In the late 80's, T. Wolff and J. Lewis produced unexpected examples showing, when p was not equal to 2, solutions behave differently from the case when p= 2, i.e., Fatou's theorem fails. Recently the PI, in collaboration with R. Kaufman, incorporated probabilistic and discrete ideas into the research program, and made progress by showing that in the case of the half plane the boundary behavior is worse than previously known for certain values of p.The PI proposes to investigate the curious boundary behavior for the full range of p; to study properties of harmonic measure for the p-Laplacian on boundary of the half plane; and also to continue her work in the tree setting, where many of the probabilistic ideas originated.As fractals appear everywhere in nature from ferns to galaxies, it is important to find out how two seemingly different fractals are related through transformations, and how the dimension of a fractal changes during the transformation. The success of the first part of proposal willanswer some of these questions, which should be of interest to biologists, physicists and mathematicians. Many differential equations based on physical models are genuinely nonlinear; and finding explicit solutions is usually impossible. To learn the nature of the solutions, one relies on estimates from partial differential equations. In this project, ideas from discrete analysis and probability are brought in to handle some of the difficulties. The success of this project will provide new tools to study the boundary behavior of a large class of nonlinear partial differential equations and will have practical applications to nonlinear hydrodynamics, fluid flow, elasticity and dynamical systems. Moreover, some questions on trees and on fractals lead naturally to problems suitable for student research, which the PI plans to direct.
所提出的研究涉及两个重要的分析领域:拟共形变形副产物和p-Laplace方程的解。近几年来,对分形学的研究一直很活跃。拟共形映射是介于同胚和微分同胚之间的一类中间映射,是变形分形的自然候选者。在数学上,分形图表现为迭代函数系统的不变集。给出了迭代函数系统中这些不变集是拟对称等价的条件;将这种拟对称同胚推广到全局拟共形映射的条件;降低自相似分形图的Hausdorff维的方法;以及更一般集上的相关问题的答案。PI与J·泰森合作,已经对Sierpinski垫片--一类特殊的分形学--得到了确凿的结果。在非线性弹性力学中,p-Laplace方程的解使总能量最小。当p不同于2时,由于解的非线性和简并性,解的边界行为在很大程度上仍然是一个谜。在80年代后期,S、沃尔夫和J·刘易斯给出了意想不到的例子,表明当p不等于2时,解的行为与当p=2时不同,即Fatou定理失败。最近,PI与R.Kaufman合作,将概率和离散的思想融入到研究程序中,并取得了进展,表明在半平面的情况下,对于p的某些值,边界行为比以前已知的更差。PI建议研究全p范围内奇怪的边界行为;研究p-Laplace算子在半平面边界上的调和测度的性质;此外,她还将继续她在树环境中的工作,许多概率概念都是在树的背景下产生的。由于从蕨类植物到星系,自然界中到处都有分形图,因此找出两个看似不同的分形图是如何通过变换联系在一起的,以及在变换过程中分形图的维度是如何变化的,这一点很重要。提案第一部分的成功将回答其中一些问题,这些问题应该是生物学家、物理学家和数学家感兴趣的。许多基于物理模型的微分方程是真正的非线性方程;而且通常不可能找到显式解。要了解解的性质,需要依靠偏微分方程解的估计。在这个项目中,引入了离散分析和概率论的思想来处理一些困难。该项目的成功将为研究一大类非线性偏微分方程组的边界行为提供新的工具,并将在非线性流体力学、流体流动、弹性力学和动力系统中有实际的应用。此外,一些关于树和分形学的问题自然会导致适合学生研究的问题,PI计划指导这些问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jang-Mei Wu其他文献

Harmonic measures for elliptic operators of nondivergence form
  • DOI:
    10.1007/bf00276696
  • 发表时间:
    1996-02-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Jang-Mei Wu
  • 通讯作者:
    Jang-Mei Wu
Smooth Quasiregular Maps with Branching in R n
  • DOI:
    10.1007/s10240-005-0031-4
  • 发表时间:
    2005-06-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Robert Kaufman;Jeremy T. Tyson;Jang-Mei Wu
  • 通讯作者:
    Jang-Mei Wu

Jang-Mei Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jang-Mei Wu', 18)}}的其他基金

Quasisymmetric Maps-Parametrization, Extension and Factorization
拟对称映射-参数化、扩展和因式分解
  • 批准号:
    1001669
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasiconformal Analysis and the p-Laplacian
拟共形分析和 p-拉普拉斯
  • 批准号:
    0653088
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Potential Theory of Symmetric Stable Processes, p-Laplacian on Trees and Quasiregular Maps
对称稳定过程势论、树上的 p-拉普拉斯算子和拟正则映射
  • 批准号:
    0070312
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasiconformal Mappings, Doubling Measures and Subharmonic Functions
拟共形映射、倍增测度和次谐波函数
  • 批准号:
    9705227
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Potential Theory
数学科学:势论问题
  • 批准号:
    9400687
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Uniform deformation of aggregate and paste with higher adhesive force for maximizing aggregate content in fresh concrete maintaining the level of self-compacting performance
骨料和浆体均匀变形,具有较高的粘合力,可最大限度地提高新拌混凝土中的骨料含量,保持自密实性能水平
  • 批准号:
    19H02217
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fabrication and application of nanoscroll by self-deformation based on thin film residual stress
基于薄膜残余应力的自变形纳米卷轴的制备及应用
  • 批准号:
    18K13657
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A theoretical study of self-organization phenomena of 3D membrane deformation: toward understanding of macropinocytosis
3D 膜变形自组织现象的理论研究:理解巨胞饮作用
  • 批准号:
    18K13514
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding self-assembled He-bubble superlattices under deformation in materials utilizing novel experimental methods
利用新颖的实验方法了解材料变形下的自组装氦气泡超晶格
  • 批准号:
    1807822
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Continuous and Drift Free Vertical Deformation Measurements at Axial Seamount - Installation of a Self Calibrating Pressure Recorder on the OOI Cabled Array
轴向海山连续无漂移垂直变形测量 - 在 OOI 电缆阵列上安装自校准压力记录仪
  • 批准号:
    1657797
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on self-propelling and jumping aquatic animals near water surface by deformation considering muscle force
考虑肌力变形的水生动物近水面自推进跳跃研究
  • 批准号:
    17K06148
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fabrication of Core Nanocoil by Self-deformation Technique
自变形技术制备核心纳米线圈
  • 批准号:
    16K21093
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of self-adaptive moving mesh methods for numerical computations of phenomena with large deformation based on the theory of integrable systems
基于可积系统理论的大变形现象数值计算自适应移动网格方法的发展
  • 批准号:
    15K04909
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High effective strengthening of metallic implants made of metals with self-tunable elastic modulus by partial deformation
通过局部变形对弹性模量自调节金属制成的金属植入物进行高效强化
  • 批准号:
    15K13825
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of steel pier with energy dissipation capacity and self-restoring capacity to reduce residual deformation
开发具有耗能和自恢复能力以减少残余变形的钢桥墩
  • 批准号:
    24656279
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了