Quasiconformal Analysis and the p-Laplacian
拟共形分析和 p-拉普拉斯
基本信息
- 批准号:0653088
- 负责人:
- 金额:$ 20.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates fundamental questions in quasiconformal analysis and nonlinear potential theory. Specific topics include the branching of quasiregular maps, quasiconformal Jacobians, and the boundary behavior of p-harmonic functions. Quasiregular maps are geometrical generalizations of analytic functions from the complex plane to Euclidean spaces. Problems on branching properties of smooth quasiregular mappings lie at the intersection of geometric function theory and topology, and, they have close connections to the existence of snowflake embeddings, quasiconformal decomposition and extension, and refinement of quasiconformal structures on compact manifolds. The quasiconformal Jacobian problem studies the possibility of, and the method for, reconstructing quasiconformal maps from assigned volume ratios. Both quasiconformal and quasiregular maps have the characteristic of bounded distortion and are solutions to equations related to the n-Laplacian. When p is different from 2, because of the nonlinearity and the degeneracy of the p-Laplace equation the nature of its solutions is still largely a mystery. A recent example of the principal investigator and her collaborators suggests that solutions to the p-Laplacian may exhibit even worse behavior than previously shown by Wolff and Lewis. In this project, the principal investigator will continue to investigate the dimension of the support of the p-harmonic measure, the size of the associated Fatou sets, and the growth of solutions to the p-harmonic equation when the boundary functions exhibit rapidly increasing frequencies. Methods from probability will be used to handle some of the analytical difficulties. This project brings together several areas of mathematics, and if successful, will provide new tools for attacking difficult problems in geometric analysis and potential theory.Objects that do not have smooth structure appear naturally in physics and biology. Quasiconformal mappings, having bounded distortion, are very suitable for studying nonsmooth structures. Recently, there have been exciting discoveries in applying quasiconformal mappings to study images of brain cortical surfaces and to determine the conductivity of a body. The p-Laplacian occurs both in the porous medium equation from fluid dynamics and in nonlinear elasticity. For this reason it has applications to many physical problems. The project in this proposal deals with intrinsic properties of functions of bounded distortion and solutions of nonlinear equations. The findings will likely play an important role in the aforementioned applications.
本项目研究拟共形分析和非线性势理论中的基本问题。具体的主题包括拟正则映射的分支,拟共形雅可比矩阵,和p调和函数的边界行为。拟正则映射是解析函数从复平面到欧氏空间的几何推广。光滑拟正则映射的分支性质问题是几何函数理论与拓扑学的交叉问题,与雪花嵌入的存在性、紧流形上的拟共形分解与扩展、拟共形结构的细化等问题有着密切的联系。拟共形雅可比问题研究了从给定体积比重构拟共形映射的可能性和方法。拟共形映射和拟正则映射都具有有界畸变的特征,是与n-拉普拉斯算子有关的方程的解。当p不等于2时,由于p-拉普拉斯方程的非线性和简并性其解的性质在很大程度上仍然是一个谜。这位首席研究员和她的合作者最近的一个例子表明,p-拉普拉斯算子的解可能比沃尔夫和刘易斯之前所展示的更糟糕。在这个项目中,首席研究员将继续研究p-调和测度的支持维度,相关法图集的大小,以及当边界函数表现出快速增加的频率时p-调和方程解的增长。概率论的方法将用于处理一些分析上的困难。这个项目汇集了数学的几个领域,如果成功,将为解决几何分析和势理论中的难题提供新的工具。没有光滑结构的物体在物理学和生物学中自然出现。拟共形映射具有有界畸变,非常适合研究非光滑结构。最近,在应用拟共形映射来研究大脑皮层表面图像和确定身体电导率方面有了令人兴奋的发现。p-拉普拉斯方程既存在于流体力学的多孔介质方程中,也存在于非线性弹性方程中。由于这个原因,它适用于许多物理问题。本课题研究有界畸变函数的固有性质和非线性方程的解。这些发现可能会在上述应用中发挥重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jang-Mei Wu其他文献
Harmonic measures for elliptic operators of nondivergence form
- DOI:
10.1007/bf00276696 - 发表时间:
1996-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Jang-Mei Wu - 通讯作者:
Jang-Mei Wu
Smooth Quasiregular Maps with Branching in R n
- DOI:
10.1007/s10240-005-0031-4 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:3.500
- 作者:
Robert Kaufman;Jeremy T. Tyson;Jang-Mei Wu - 通讯作者:
Jang-Mei Wu
Jang-Mei Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jang-Mei Wu', 18)}}的其他基金
Quasisymmetric Maps-Parametrization, Extension and Factorization
拟对称映射-参数化、扩展和因式分解
- 批准号:
1001669 - 财政年份:2010
- 资助金额:
$ 20.74万 - 项目类别:
Continuing Grant
Quasiconformal Deformation of Self-similar Sets and Fatou Theorems for p-Laplacian
自相似集的拟共形变形和 p-拉普拉斯的 Fatou 定理
- 批准号:
0400810 - 财政年份:2004
- 资助金额:
$ 20.74万 - 项目类别:
Continuing Grant
Potential Theory of Symmetric Stable Processes, p-Laplacian on Trees and Quasiregular Maps
对称稳定过程势论、树上的 p-拉普拉斯算子和拟正则映射
- 批准号:
0070312 - 财政年份:2000
- 资助金额:
$ 20.74万 - 项目类别:
Continuing Grant
Quasiconformal Mappings, Doubling Measures and Subharmonic Functions
拟共形映射、倍增测度和次谐波函数
- 批准号:
9705227 - 财政年份:1997
- 资助金额:
$ 20.74万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Potential Theory
数学科学:势论问题
- 批准号:
9400687 - 财政年份:1994
- 资助金额:
$ 20.74万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
- 批准号:
ES/Y004906/1 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 20.74万 - 项目类别:
Standard Grant