Potential Theory of Symmetric Stable Processes, p-Laplacian on Trees and Quasiregular Maps

对称稳定过程势论、树上的 p-拉普拉斯算子和拟正则映射

基本信息

  • 批准号:
    0070312
  • 负责人:
  • 金额:
    $ 10.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2004-04-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTThe goal of the research is to study potential theoretic problemsarising in the following areas. (1) Symmetric stable processes arediscontinuous and nonlocal versions of Brownian motions. The jumps ofthe processes impose many technical complications, at the same timemaking the roughness of the boundary invisible; consequently theyproduce many unexpected properties and interesting questions.Harmonic measures, Martin boundaries and a certain version of boundaryHarnack principle will be investigated. (2) On trees of nonregularbranching, or on a random Galton-Watson tree, problems on sizes ofFatou sets of bounded p-harmonic functions will be studied. Theseare discrete analoge of the usual p-harmonic functions. (3) Fora quasiregular mapping on the unit ball, the relation between thevolume growth of the mapping and size of the set on the unit spherewhere the function has asymptotic values will be analyzed. Thisconstitutes a first step towards a very difficult problem of Fatousets for bounded quasiregular mappings.Brownian motion has been studied at least since Norbert Wiener and hasplayed a central role in probability and potential theory, which inturn are very important in the study of differential equations, heatconductivity, electrostatic potential and fluid dynamics. Recently,there are many problems in physics and mathematical finance and riskestimation which have been modelled and studied successfully with theuse of symmetric stable processes -- discontinuous counterpart of theBrownian motions. A symmetric stable process has discontinuoussample paths and heavy tails, while Brownian motion has continuoussample paths and exponentially decaying tails. Therefore manytechniques from Brownian motions can not be routinely adapted to theseprocesses. Wide range applications and challenging behaviors of theprocesses are the motivation behind the proposed research. Wu hopesthat knowledge derived from a theoretical study of these processesfrom an analytical point of view, will give new tools for applicationsin physics and finance.
本研究的目的是研究在以下方面可能出现的理论问题。(1)对称稳定过程是布朗运动的不连续和非局部形式。过程的跳跃带来了许多技术复杂性,同时使边界的粗糙程度不可见;因此,它们产生了许多意想不到的性质和有趣的问题。调和度量、马丁边界和某种形式的边界哈纳克原理将被研究。(2)在非正则分枝树或随机Galton-Watson树上,研究有界p-调和函数的Fatou集的大小问题。这些都是通常的p-调和函数的离散模拟。(3)对于单位球上的拟正则映射,分析了映射的体积增长与单位球上函数具有渐近值的集合的大小之间的关系。这是向有界拟正则映射的Fatouset问题迈出的第一步。布朗运动至少从Norbert Wiener开始就被研究过,并在概率论和位势理论中发挥了中心作用,而这些理论在微分方程、导热、静电势和流体动力学的研究中又是非常重要的。近年来,在物理、数学、金融和风险估计等领域有许多问题已经被成功地用对称稳定过程--布朗运动的不连续对应过程--来模拟和研究。对称稳定过程具有不连续的样本路径和重尾,而布朗运动具有连续的样本路径和指数衰减的尾巴。因此,布朗运动的许多技术不能常规地适应这些过程。这些过程的广泛应用和具有挑战性的行为是本研究背后的动机。吴希望,从分析的角度对这些过程进行理论研究所获得的知识,将为物理和金融领域的应用提供新的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jang-Mei Wu其他文献

Harmonic measures for elliptic operators of nondivergence form
  • DOI:
    10.1007/bf00276696
  • 发表时间:
    1996-02-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Jang-Mei Wu
  • 通讯作者:
    Jang-Mei Wu
Smooth Quasiregular Maps with Branching in R n
  • DOI:
    10.1007/s10240-005-0031-4
  • 发表时间:
    2005-06-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Robert Kaufman;Jeremy T. Tyson;Jang-Mei Wu
  • 通讯作者:
    Jang-Mei Wu

Jang-Mei Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jang-Mei Wu', 18)}}的其他基金

Quasisymmetric Maps-Parametrization, Extension and Factorization
拟对称映射-参数化、扩展和因式分解
  • 批准号:
    1001669
  • 财政年份:
    2010
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Continuing Grant
Quasiconformal Analysis and the p-Laplacian
拟共形分析和 p-拉普拉斯
  • 批准号:
    0653088
  • 财政年份:
    2007
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Continuing Grant
Quasiconformal Deformation of Self-similar Sets and Fatou Theorems for p-Laplacian
自相似集的拟共形变形和 p-拉普拉斯的 Fatou 定理
  • 批准号:
    0400810
  • 财政年份:
    2004
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Continuing Grant
Quasiconformal Mappings, Doubling Measures and Subharmonic Functions
拟共形映射、倍增测度和次谐波函数
  • 批准号:
    9705227
  • 财政年份:
    1997
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Potential Theory
数学科学:势论问题
  • 批准号:
    9400687
  • 财政年份:
    1994
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Coding theory and Design theory for probability measures on symmetric spaces
对称空间概率测度的编码理论和设计理论
  • 批准号:
    23KJ1641
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
  • 批准号:
    2237057
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Continuing Grant
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    DGECR-2022-00432
  • 财政年份:
    2022
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Discovery Launch Supplement
Chromatic Symmetric Functions: Solving Algebraic Conjectures Using Graph Theory
色对称函数:使用图论解决代数猜想
  • 批准号:
    RGPIN-2022-03093
  • 财政年份:
    2022
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Discovery Grants Program - Individual
Representation theory of wild cyclotomic quiver Hecke algebras and the symmetric group
狂野分圆箭袋Hecke代数和对称群的表示论
  • 批准号:
    21K03163
  • 财政年份:
    2021
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PT symmetric field theory
PT对称场论
  • 批准号:
    EP/V002821/1
  • 财政年份:
    2021
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Research Grant
Symmetric invariants, Poisson-commutative subalgebras, and interactions with representation theory
对称不变量、泊松交换子代数以及与表示论的相互作用
  • 批准号:
    454900253
  • 财政年份:
    2020
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Heisenberg Grants
Model Theory of Enhanced Light-Matter Interaction in a PT-Symmetric Hybrid Optical Cavity
PT对称混合光腔中增强光-物质相互作用的模型理论
  • 批准号:
    1954393
  • 财政年份:
    2020
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Standard Grant
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
  • 批准号:
    20K03575
  • 财政年份:
    2020
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了