FRG: Collaborative Research: Semidefinite optimization and convex algebraic geometry
FRG:协作研究:半定优化和凸代数几何
基本信息
- 批准号:0757371
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal in this proposal is to develop the mathematical foundations andassociated computational methods for the study of convex sets in realalgebraic geometry. This work requires a combination of ideas andmathematical tools from optimization, analysis, algebra and combinatorics.The proposed program will lead not only to theoretical insights, but also tonew algorithms and software that will enable novel applications inmathematics, engineering, and beyond. The work is organized in five mainthrusts: semidefinite programming and sums of squares, convex semi-algebraicsets, sparsity and graphical structure, numerical polynomial optimizationand applications, and deformations and variation of parameters. The PIs willfocus on the development of a comprehensive theory and practical newalgorithms for convex sets defined by polynomial inequalities. Specificproblems and techniques include the formulation of semidefinite descriptionsof convex hulls of real algebraic varieties, determinantal representationsof hyperbolic polynomials, sparse polynomials and their symmetries, tropicalgeometry and homotopy techniques, and geometric programming.Many areas in mathematics, as well as applications in engineering, financeand the sciences, require a thorough understanding of convex sets. This is aclass of geometric shapes, with several different but complementaryinterpretations. The goal in this project is to achieve a betterunderstanding of how these geometric properties emerge from their algebraicdescriptions in terms of polynomial equations, and the correspondingcomputational implications. One of the main motivations is the possibilityof applying these results in the context of optimization. The proposedresearch will contribute to existing knowledge, both in algebraic-geometrictechniques as well as in mathematical optimization. It will create synergiesbetween different branches of applied mathematics, and their engineering andscientific applications (e.g., in computational biology and statisticalmodeling). Successful completion of this project should contribute to theavailability of efficient and reliable computational tools for solvingpolynomial systems, which have clear technological and economic interest.Other key features of this proposal include its integration with curriculumdevelopment, undergraduate research projects, training of graduate studentsand postdocs, and the development of new software tools for computationaloptimization.
这个建议的目标是发展数学基础和相关的计算方法,用于研究实代数几何中的凸集。这项工作需要结合来自优化、分析、代数和组合学的思想和数学工具。拟议中的计划不仅会带来理论见解,还会带来新的算法和软件,从而实现数学、工程和其他领域的新应用。这项工作分为五个主要方向:半定规划与平方和、凸半代数集、稀疏性与图结构、数值多项式优化与应用、参数的变形与变化。PI将专注于由多项式不等式定义的凸集的综合理论和实用新出租的发展。具体问题和技巧包括真实的代数簇的凸包的半定解的公式化,双曲多项式的行列式表示,稀疏多项式及其对称性,热带几何和同伦技巧,几何规划。数学的许多领域,以及在工程,金融和科学中的应用,都需要对凸集有透彻的理解。这是一类几何形状,有几种不同但互补的解释。这个项目的目标是更好地理解这些几何性质是如何从多项式方程的代数描述中出现的,以及相应的计算含义。其中一个主要的动机是在优化的背景下应用这些结果的可能性。建议的研究将有助于现有的知识,无论是在代数几何技术以及在数学优化。它将在应用数学的不同分支及其工程和科学应用(例如,in computational计算biology生物学and approximatelmodeling建模).该项目的成功完成将有助于为求解多项式系统提供高效可靠的计算工具,这具有明显的技术和经济利益。该项目的其他关键特征包括与计算机开发、本科生研究项目、研究生和博士后培训以及新的计算优化软件工具的开发相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rekha Thomas其他文献
Small Chvátal Rank
- DOI:
10.1007/s10107-010-0370-x - 发表时间:
2010-05-14 - 期刊:
- 影响因子:2.500
- 作者:
Tristram Bogart;Annie Raymond;Rekha Thomas - 通讯作者:
Rekha Thomas
Development of a Near-Infrared Spectroscopy (NIRS)–Based Characterization Approach for Inherent Powder Blend Heterogeneity in Direct Compression Formulations
- DOI:
10.1208/s12248-022-00775-1 - 发表时间:
2022-12-08 - 期刊:
- 影响因子:3.700
- 作者:
Zhenqi Shi;Kallakuri Suparna Rao;Prajwal Thool;Robert Kuhn;Rekha Thomas;Sharyl Rich;Chen Mao - 通讯作者:
Chen Mao
Lifts of convex sets in optimization
- DOI:
10.1007/s10107-015-0940-z - 发表时间:
2015-08-22 - 期刊:
- 影响因子:2.500
- 作者:
Volker Kaibel;Rekha Thomas - 通讯作者:
Rekha Thomas
Rekha Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rekha Thomas', 18)}}的其他基金
Sums of Squares Polynomials in Optimization, Combinatorics, and Computer Vision
优化、组合学和计算机视觉中的多项式平方和
- 批准号:
1719538 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Polynomial Optimization and Convex Algebraic Geometry
多项式优化和凸代数几何
- 批准号:
1115293 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Groebner Fans in Combinatorics, Representation Theory and Commutative Algebra: Theory and Computation
格罗布纳的组合学、表示论和交换代数爱好者:理论与计算
- 批准号:
0401047 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Combinatorial Commutative Algebra and Integer Programming
组合交换代数和整数规划
- 批准号:
0100141 - 财政年份:2001
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant