Polynomial Optimization and Convex Algebraic Geometry
多项式优化和凸代数几何
基本信息
- 批准号:1115293
- 负责人:
- 金额:$ 34.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This study focuses on problems from polynomialoptimization and convex algebraic geometry. The latter is a newresearch area that concerns convex sets and convex hulls of sets thatare described algebraically and arise in optimization. The key tool is the use of efficient algorithms in semidefinite programming, a branch of convex optimization that is used in polynomial optimization. Thefirst set of questions studies the general phenomenon of when a givenconvex body is the linear projection of a slice (by an affine plane)of a closed convex cone. This phenomena is central to alllift-and-project methods for discrete and polynomial optimization. This studyprovides a uniform view of all lift-and-projectmethods via new notions of cone factorizations of certain operatorsassociated to the convex body. The investigator and collaborators haverecently constructed a new hierarchy of convex relaxations foralgebraic sets called theta bodies. Various open questions about thesebodies are posed. The methodsfrom polynomial optimization and convex algebraic geometry can be applied to problemsfrom computer vision. Here the application is primarily to object reconstruction fromimages taken by multiple cameras.The work of the PI with her collaborators improvies our understanding of the algebraic and geometricstructures that underlie optimization problems that involvepolynomials. Such problems have a wide array of applications and admitmethods from both the algebraic and analytic sides ofmathematics. This research considers both improvements in our understanding of the theoretical aspects of polynomial optimization, and the application of these methods to problems in computer vision.
本文主要研究多项式优化和凸代数几何中的问题。后者是一个新的研究领域,涉及凸集和凸壳集合的代数描述,并出现在优化。关键工具是在半定规划中使用有效的算法,半定规划是凸优化的一个分支,用于多项式优化。第一组问题研究了一个给定的凸体何时是一个封闭凸锥的片(由仿射平面)的线性投影的一般现象。这种现象是离散优化和多项式优化的所有提升和项目方法的核心。本研究通过与凸体相关的某些算子的锥分解的新概念,提供了所有提升和投影方法的统一视图。研究者和合作者最近为称为theta体的代数集构造了一个新的凸松弛层次。对这些人提出了各种悬而未决的问题。多项式优化和凸代数几何的方法可以应用于计算机视觉问题。这里的应用程序主要是从多个相机拍摄的图像中重建物体。PI和她的合作者的工作提高了我们对代数和几何结构的理解,这些结构是涉及多项式的优化问题的基础。这类问题具有广泛的应用范围,并且可以从数学的代数和解析两方面使用方法。本研究既考虑了我们对多项式优化理论方面的理解的改进,也考虑了这些方法在计算机视觉问题中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rekha Thomas其他文献
Small Chvátal Rank
- DOI:
10.1007/s10107-010-0370-x - 发表时间:
2010-05-14 - 期刊:
- 影响因子:2.500
- 作者:
Tristram Bogart;Annie Raymond;Rekha Thomas - 通讯作者:
Rekha Thomas
Development of a Near-Infrared Spectroscopy (NIRS)–Based Characterization Approach for Inherent Powder Blend Heterogeneity in Direct Compression Formulations
- DOI:
10.1208/s12248-022-00775-1 - 发表时间:
2022-12-08 - 期刊:
- 影响因子:3.700
- 作者:
Zhenqi Shi;Kallakuri Suparna Rao;Prajwal Thool;Robert Kuhn;Rekha Thomas;Sharyl Rich;Chen Mao - 通讯作者:
Chen Mao
Lifts of convex sets in optimization
- DOI:
10.1007/s10107-015-0940-z - 发表时间:
2015-08-22 - 期刊:
- 影响因子:2.500
- 作者:
Volker Kaibel;Rekha Thomas - 通讯作者:
Rekha Thomas
Rekha Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rekha Thomas', 18)}}的其他基金
Sums of Squares Polynomials in Optimization, Combinatorics, and Computer Vision
优化、组合学和计算机视觉中的多项式平方和
- 批准号:
1719538 - 财政年份:2017
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Semidefinite optimization and convex algebraic geometry
FRG:协作研究:半定优化和凸代数几何
- 批准号:
0757371 - 财政年份:2008
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
Groebner Fans in Combinatorics, Representation Theory and Commutative Algebra: Theory and Computation
格罗布纳的组合学、表示论和交换代数爱好者:理论与计算
- 批准号:
0401047 - 财政年份:2004
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
Combinatorial Commutative Algebra and Integer Programming
组合交换代数和整数规划
- 批准号:
0100141 - 财政年份:2001
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
- 批准号:
2340713 - 财政年份:2024
- 资助金额:
$ 34.28万 - 项目类别:
Continuing Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
- 批准号:
2401242 - 财政年份:2024
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240789 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
- 批准号:
2236829 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Continuing Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240788 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
- 批准号:
23K10995 - 财政年份:2023
- 资助金额:
$ 34.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
- 批准号:
10674871 - 财政年份:2022
- 资助金额:
$ 34.28万 - 项目类别:
Designing Faster Algorithms by Connecting Structural Combinatorics and Convex Optimization
通过连接结构组合学和凸优化来设计更快的算法
- 批准号:
557770-2021 - 财政年份:2022
- 资助金额:
$ 34.28万 - 项目类别:
Postgraduate Scholarships - Doctoral
Structured convex optimization with applications
结构化凸优化及其应用
- 批准号:
RGPIN-2019-07199 - 财政年份:2022
- 资助金额:
$ 34.28万 - 项目类别:
Discovery Grants Program - Individual
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
- 批准号:
10504516 - 财政年份:2022
- 资助金额:
$ 34.28万 - 项目类别: