Topics in Mathematical Analysis
数学分析专题
基本信息
- 批准号:0401260
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal DMS-0401260PI: F. Michael Christ- University of California, BerkeleyTitle: Topics in Mathematical AnalysisABSTRACTResearch will be conducted on a broad array of problemsin harmonic analysis, linear and nonlinear partial differential equations,several complex variables, Schroedinger operators,and ordinary differential equations.In harmonic analysis proper, the decay properties of multilinear oscillatoryintegral operators will be investigated, and Lebesgue space mapping propertiesof generalized Radon transforms will be analyzed in terms of underlying geometry. Techniques from harmonic analysiswill be used to develop a theory of almost everywhere WKB asymptotics for solutionsof ordinary differential equations depending on a parameter. In complex analysis, compactness of the d-bar Neumann problem, theanalytic hypoellipticity of related operators, and Toeplitz operators will be investigated. The Cauchy problem will be studied for nonlinear evolution equations, with the aim ofclarifying phenomena involving instablility and growth of norms of solutions. The spectra and generalized eigenfunctions of time-independent Schroedinger operators,in one and higher dimensions, will be investigated.The most fundamental laws of physical science are formulated as partial differentialequations. These equations are sometimes linear, and sometimes nonlinear, modelingvarious types of self-interaction. The nonlinear Schrodinger equation arises inconnection with Bose-Einstein condensates, fiber optics, and assorted other physicallydifferent phenomena. Time-independent Schrodinger operators with long-range potentialsmodel the quantum properties of disordered electrical media. Other sources of problems concerning differential equations are internal to mathematics,such as complex analysis in several variables. One of the most basic tools for the analysis of differential equations is harmonicanalysis. This research will focus both on the use of harmonic analysis methods tofurther the understanding of the nature of solutions of differential equations,and on the development of new tools within harmonic analysis which may ultimately providefurther insight into differential equations, as well as solving problems within harmonicanalysis itself.
提案DMS-0401260 PI:F. Michael Christ-加州大学伯克利分校数学分析专题摘要研究内容包括调和分析、线性和非线性偏微分方程、多复变量、薛定谔算子和常微分方程。在调和分析中,将研究多线性积分算子的衰减性质,和Lebesgue空间映射性质的广义Radon变换将分析的基础几何。从调和分析的技术将被用来发展一个理论的几乎处处WKB渐近解的常微分方程依赖于一个参数。在复分析中,d-杆Neumann问题的紧性,相关算子的解析亚椭圆性,以及Toeplitz算子将被研究。本文研究非线性发展方程的柯西问题,目的在于阐明解的不稳定性和范数增长性。本课程将研究一维和更高维的与时间无关的薛定谔算子的谱和广义本征函数,并将物理学最基本的定律表述为偏微分方程。这些方程有时是线性的,有时是非线性的,模拟了各种类型的自相互作用。非线性薛定谔方程的产生与玻色-爱因斯坦凝聚、纤维光学和其他各种不同的物理现象有关。含长程势的非时性薛定谔算符模拟了无序电介质的量子特性。微分方程问题的其他来源是数学内部的,例如多变量的复分析。分析微分方程最基本的工具之一是调和分析。这项研究将集中在调和分析方法的使用,以进一步了解微分方程的解的性质,并在调和分析中的新工具,最终可能提供进一步深入了解微分方程的发展,以及在harmonicanalysis本身解决问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Christ其他文献
Francis Christ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Christ', 18)}}的其他基金
Inequalities, Symmetry, Extremality, and Multilinear Interactions
不等式、对称性、极值性和多线性相互作用
- 批准号:
1901413 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Multilinear inequalities: Combinatorial and geometric aspects, and extremization
多线性不等式:组合和几何方面以及极值化
- 批准号:
1363324 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Harmonic Analysis, Partial Differential Equations, and Complex Analysis
调和分析、偏微分方程和复分析
- 批准号:
0901569 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Harmonic Analysis and Subelliptic Partial Differential Equations
调和分析和次椭圆偏微分方程
- 批准号:
9970660 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Aspects of Subelliptic Partial Differential Equations
次椭圆偏微分方程的各个方面
- 批准号:
0096130 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Aspects of Subelliptic Partial Differential Equations
次椭圆偏微分方程的各个方面
- 批准号:
9623007 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Subelliptic Partial Differential Equations and Harmonic Analysis
数学科学:次椭圆偏微分方程和调和分析
- 批准号:
9306833 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integral Operators and Applications
数学科学:奇异积分算子及其应用
- 批准号:
9003223 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Applications
数学科学:奇异积分及其应用
- 批准号:
8703314 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Mathematical Analysis of Topics from Materials Science
材料科学主题的数学分析
- 批准号:
2007157 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Analysis of Free Boundary Problems in EMHD and Related Topics
EMHD 中自由边界问题的数学分析及相关主题
- 批准号:
26400176 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Modern Analysis
数学科学:现代分析主题
- 批准号:
9613833 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Applied Asymptotic Analysis
数学科学:应用渐近分析主题
- 批准号:
9625341 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Multivariate Survival Analysis and Counting Processes
数学科学:多元生存分析和计数过程主题
- 批准号:
9504507 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Ergodic Theory and Analysis
数学科学:遍历理论与分析主题
- 批准号:
9303327 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Modern Analysis
数学科学:现代分析主题
- 批准号:
9303386 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9306245 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Multivariate Survival Analysis and Counting Processes
数学科学:多元生存分析和计数过程主题
- 批准号:
9310079 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant