Multilinear inequalities: Combinatorial and geometric aspects, and extremization
多线性不等式:组合和几何方面以及极值化
基本信息
- 批准号:1363324
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical research aims to discover universal mathematical laws that apply to any possible phenomenon that can be accurately described or modeled through mathematics. Fundamental physical laws are often expressed through the principle that a system minimizes or maximizes (that is, extremizes) some quantity. Light rays, for instance, follow paths that minimize travel time through media with varying indices of refraction. Systems minimize various actions or energies. Other physical laws are encoded in partial differential equations. Mathematical analysis provides tools that can be used to understand both such differential equations, and the extremization of many types of functionals. This project is concerned with development of techniques for the analysis of functions and sets that extremize, or nearly extremize, inequalities that are closely tied to the underlying algebraic and geometric structures of classical (nonrelativistic) physical space. Characterization of near-extremizers provides a more robust understanding of exact extremizers, which takes into account small imperfections and perturbations. Among the inequalities to be studied are some of the most fundamental and widely used inequalities of mathematical analysis, including inequalities governing the Fourier transform, convolutions, and sums of sets in Euclidean space. Each of these inequalities is multilinear, involving products or other pairwise interactions, or has underlying multilinear aspects. Multilinear functionals lie on the frontier between linear and fully nonlinear phenomena. Other multilinear inequalities will also be investigated as part of this project, including variants of the Fourier transform. Fundamental multilinear inequalities in Lebesgue space and related norms will be investigated. Prototypes include inequalities of Riesz-Sobolev (concerning integrals over symmetrizations of sets), Brunn-Minkowski (concerning sums of sets), Hausdorff-Young (concerning the Fourier transform) and Young (concerning convolutions). In a major part of the project, attention will focus on the nature and quantitative properties of functions and sets that nearly, but not exactly, extremize such inequalities. This will establish more robust versions of existing characterizations of exact extremizers. Methodology for establishing compactness for extremizing sequences, based on additive combinatorial considerations rather than on concentration, will be developed. These tools include characterizations of sets with small sumsets, of sets with sumsets of moderately large but controlled size, and of sets with large additive energies. Refined inequalities will be formulated and established, incorporating second terms measuring structure, rather than size. Arithmetic progressions, intervals, ellipsoids, convex sets, and Gaussian functions will provide the context for such measurement. An improved understanding of the interplay between approximate group structure and near extremality in affine-invariant multilinear inequalities is a primary goal. The principal investigator will also apply discrete multilinear inequalities to computer science. Rigorous lower bounds for communication between elements of memory hierarchies will be proved, and methods for computing these bounds will be devised. Other research problems to be investigated include an inverse problem concerning the off-diagonal behavior of Bergman kernels associated to high powers of positive complex line bundles,inequalities for multilinear oscillatory integral operators related to the Hausdorff-Young inequality,and a possible characterization of equality in a class of multilinear inequalities previously analyzed by Holder, Rogers, Riesz, Sobolev, and Brascamp-Lieb-Luttinger.
数学研究旨在发现适用于任何可能的现象的普遍数学定律,这些现象可以通过数学精确描述或建模。基本物理定律通常通过系统最小化或最大化(即极值化)某个量的原理来表达。例如,光线沿着最小化通过具有不同折射率的介质的传播时间的路径。系统最小化各种动作或能量。其他的物理定律都被编码在偏微分方程中。数学分析提供了工具,可以用来理解这两个微分方程,并极值化的许多类型的泛函。该项目关注的是开发用于分析函数和集合的技术,这些函数和集合使与经典(非相对论)物理空间的基本代数和几何结构密切相关的不等式极端化或接近极端化。近似极值的表征提供了对精确极值的更稳健的理解,其考虑了小的缺陷和扰动。在要研究的不等式是一些最基本和最广泛使用的数学分析不等式,包括不等式管理的傅立叶变换,卷积,并在欧几里得空间的总和。这些不等式中的每一个都是多线性的,涉及产品或其他成对的相互作用,或者具有潜在的多线性方面。多线性泛函位于线性和完全非线性现象之间的前沿。其他多线性不等式也将作为本项目的一部分进行研究,包括傅立叶变换的变体。我们将研究勒贝格空间中的基本多线性不等式和相关的范数。原型包括Riesz-Sobolev不等式(关于集合对称化的积分)、Brunn-Minkowski不等式(关于集合和)、Hausdorff-Young不等式(关于傅里叶变换)和Young不等式(关于卷积)。 在该项目的主要部分,注意力将集中在性质和数量属性的函数和集,几乎,但不完全,极端化这样的不平等。这将建立更强大的版本现有的精确极值的特征。建立极端化序列的紧凑性的方法,添加剂组合的考虑,而不是浓度的基础上,将开发。这些工具包括小的和集集的集,具有适度大,但控制大小的和集的集,和具有大的附加能量的集的特征。精细的不平等将被制定和建立,纳入第二项测量结构,而不是大小。 算术级数、区间、椭球、凸集和高斯函数将为这种测量提供背景。提高对仿射不变多线性不等式中近似群结构和近似极值之间相互作用的理解是一个主要目标。首席研究员还将离散多线性不等式应用于计算机科学。 严格的下限之间的通信内存层次结构的元素将被证明,并计算这些界限的方法将被设计。 其他的研究问题进行调查,包括反问题的非对角行为的伯格曼内核相关的高权力的积极复杂的线丛,不等式的多线性振荡积分算子有关的Hausdorff-杨不等式,并可能表征平等的一类多线性不等式以前分析的保持器,罗杰斯,Riesz,Sobolev,和Brascamp-Lieb-Luttinger。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Christ其他文献
Francis Christ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Christ', 18)}}的其他基金
Inequalities, Symmetry, Extremality, and Multilinear Interactions
不等式、对称性、极值性和多线性相互作用
- 批准号:
1901413 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Harmonic Analysis, Partial Differential Equations, and Complex Analysis
调和分析、偏微分方程和复分析
- 批准号:
0901569 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Harmonic Analysis and Subelliptic Partial Differential Equations
调和分析和次椭圆偏微分方程
- 批准号:
9970660 - 财政年份:1999
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Aspects of Subelliptic Partial Differential Equations
次椭圆偏微分方程的各个方面
- 批准号:
0096130 - 财政年份:1999
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Aspects of Subelliptic Partial Differential Equations
次椭圆偏微分方程的各个方面
- 批准号:
9623007 - 财政年份:1996
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Mathematical Sciences: Subelliptic Partial Differential Equations and Harmonic Analysis
数学科学:次椭圆偏微分方程和调和分析
- 批准号:
9306833 - 财政年份:1993
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integral Operators and Applications
数学科学:奇异积分算子及其应用
- 批准号:
9003223 - 财政年份:1990
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Applications
数学科学:奇异积分及其应用
- 批准号:
8703314 - 财政年份:1987
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似海外基金
Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
- 批准号:
AH/Z505559/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
- 批准号:
2875399 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Studentship
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
- 批准号:
ES/Z502455/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
- 批准号:
AH/Z505419/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
- 批准号:
10092240 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
- 批准号:
AH/Z505389/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
- 批准号:
AH/Z505432/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant