Harmonic Analysis, Partial Differential Equations, and Complex Analysis
调和分析、偏微分方程和复分析
基本信息
- 批准号:0901569
- 负责人:
- 金额:$ 78.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Research will be conducted into a broad array of problems in Fourier analysis, partial differential equations, and complex analysis. The PI will investigate upper bounds for multilinear oscillatory integral operators, seeking to further develop the stationary phase method and to characterize what it means for a phase function to give rise to genuinely oscillatory behavior in the multilinear context. The analytic and the underlying geometric theory of Radon-like transforms will be developed, with emphasis on Lebesgue space inequalities. The PI will use Fourier analytic methods to investigate solutions of the nonlinear Schrodinger equation, seeking to rigorously establish strongly nonlinear behavior, to analyze the transfer of energy between Fourier modes and between scales, to understand instability and stability of solutions, and to shed light on uniqueness questions. He will work to develop geometric criteria, phrased in terms of the symplectic geometry of phase space, which characterize compactness and hypoellipticity for the Neumann problem for the Cauchy-Riemann complex in several complex variables, and for related linear partial differential equations.For centuries, the fundamental laws of physical science have been most precisely formulated as differential equations, which express relationships between physical quantities and the rates at which they change. Fourier analysis was first introduced as a tool for the solution of the specific differential equation which governs heat flow, and has subsequently become a ubiquitous tool in engineering, in applied physical science, in theoretical physics, and throughout mathematics itself. This project is concerned with several different types of differential equations, with potential applications of Fourier analysis to them, and with fundamental issues internal to Fourier theory. The most challenging mathematical issues around differential equations today concern nonlinear equations, which model self-interacting physical systems. Basic nonlinear interactions are multilinear, e.g. one physical quantity multiplied by the rate of change of another; these appear for instance in the Navier-Stokes equations describing viscous fluid flow, and in the nonlinear Schrodinger equation, describing quantum optics in certain situations. Multilinear Fourier analysis is potentially a valuable tool in this context, yet is only partially developed and presents challenges. In one part of the project, multilinear Fourier operator integrals themselves are the object of study. In another, the PI will focus more narrowly on the behavior of solutions of the nonlinear Schrodinger equation, and will employ multilinear Fourier integrals as tools with the hope of analyzing stable and unstable behavior. As an integral part of this project, the PI will mentor individual PhD students in both research and teaching, so that they can in turn become productive researchers and college/university level teachers.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。研究将在傅立叶分析,偏微分方程和复分析中进行广泛的问题。PI将研究多线性振荡积分算子的上界,寻求进一步发展固定相位方法,并表征相位函数在多线性背景下产生真正振荡行为的含义。分析和基本的几何理论的Radon样变换将开发,重点是勒贝格空间不等式。PI将使用傅立叶分析方法来研究非线性薛定谔方程的解,寻求严格建立强非线性行为,分析傅立叶模式之间和尺度之间的能量转移,了解解的不稳定性和稳定性,并阐明唯一性问题。他将致力于发展几何准则,措辞在辛几何的相空间,其特点的紧凑性和hypoellipticity为诺依曼问题的柯西-黎曼复杂的几个复杂的变量,并为相关的线性偏微分方程。几个世纪以来,物理科学的基本规律已经最精确地制定为微分方程,它表示物理量和它们变化的速率之间的关系。傅立叶分析最初是作为求解控制热流的特定微分方程的工具引入的,随后在工程、应用物理科学、理论物理和整个数学中成为无处不在的工具。 这个项目涉及几种不同类型的微分方程,傅立叶分析的潜在应用,以及傅立叶理论内部的基本问题。今天围绕微分方程的最具挑战性的数学问题涉及非线性方程,它模拟自相互作用的物理系统。基本的非线性相互作用是多线性的,例如一个物理量乘以另一个物理量的变化率;这些出现在描述粘性流体流动的纳维-斯托克斯方程中,以及在某些情况下描述量子光学的非线性薛定谔方程中。多线性傅立叶分析在这方面是一个潜在的有价值的工具,但只有部分开发,并提出了挑战。在该项目的一部分,多线性傅立叶算子积分本身是研究的对象。另一方面,PI将更严格地关注非线性薛定谔方程的解的行为,并将采用多线性傅立叶积分作为工具,希望分析稳定和不稳定的行为。作为该项目的一个组成部分,PI将在研究和教学方面指导个别博士生,使他们能够成为富有成效的研究人员和学院/大学水平的教师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Christ其他文献
Francis Christ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Christ', 18)}}的其他基金
Inequalities, Symmetry, Extremality, and Multilinear Interactions
不等式、对称性、极值性和多线性相互作用
- 批准号:
1901413 - 财政年份:2019
- 资助金额:
$ 78.36万 - 项目类别:
Standard Grant
Multilinear inequalities: Combinatorial and geometric aspects, and extremization
多线性不等式:组合和几何方面以及极值化
- 批准号:
1363324 - 财政年份:2014
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
Harmonic Analysis and Subelliptic Partial Differential Equations
调和分析和次椭圆偏微分方程
- 批准号:
9970660 - 财政年份:1999
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
Aspects of Subelliptic Partial Differential Equations
次椭圆偏微分方程的各个方面
- 批准号:
0096130 - 财政年份:1999
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
Aspects of Subelliptic Partial Differential Equations
次椭圆偏微分方程的各个方面
- 批准号:
9623007 - 财政年份:1996
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Subelliptic Partial Differential Equations and Harmonic Analysis
数学科学:次椭圆偏微分方程和调和分析
- 批准号:
9306833 - 财政年份:1993
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integral Operators and Applications
数学科学:奇异积分算子及其应用
- 批准号:
9003223 - 财政年份:1990
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Applications
数学科学:奇异积分及其应用
- 批准号:
8703314 - 财政年份:1987
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 78.36万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 78.36万 - 项目类别:
Standard Grant
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 78.36万 - 项目类别:
Standard Grant
The Frequency Function Method in Elliptic Partial Differential Equations and Harmonic Analysis
椭圆偏微分方程与调和分析中的频率函数法
- 批准号:
2247185 - 财政年份:2023
- 资助金额:
$ 78.36万 - 项目类别:
Standard Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
- 批准号:
2153794 - 财政年份:2022
- 资助金额:
$ 78.36万 - 项目类别:
Standard Grant
Research in Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程研究
- 批准号:
2154031 - 财政年份:2022
- 资助金额:
$ 78.36万 - 项目类别:
Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 78.36万 - 项目类别:
Continuing Grant
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
- 批准号:
DP200101065 - 财政年份:2020
- 资助金额:
$ 78.36万 - 项目类别:
Discovery Projects
Harmonic analysis: function spaces and partial differential equations
调和分析:函数空间和偏微分方程
- 批准号:
DP190100970 - 财政年份:2019
- 资助金额:
$ 78.36万 - 项目类别:
Discovery Projects
Harmonic Analysis, Function Theory and Partial Differential Equations
调和分析、函数论和偏微分方程
- 批准号:
RGPIN-2015-06688 - 财政年份:2019
- 资助金额:
$ 78.36万 - 项目类别:
Discovery Grants Program - Individual