RUI: Electronic Device Fabrication Based on Conducting Polymer Nanofibers: Motivating Undergraduate Students Towards Research in Materials Science

RUI:基于导电聚合物纳米纤维的电子器件制造:激励本科生进行材料科学研究

基本信息

  • 批准号:
    0402766
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-04-01 至 2007-03-31
  • 项目状态:
    已结题

项目摘要

This project began three years ago with NSF funding for the preparation of conducting polymer nanofibers, for device fabrication based on these nanofibers, and for motivating undergraduate students to pursue graduate degrees in science and engineering. The nanofibers were fabricated using the electrospinning technique. In this renewal proposal, we will extend the past work done on device fabrication based on polymer nanofibers and also include the use of the Atomic Force Microscope (AFM) to probe at the nanoscale level, the charge transport properties of these conducting polymer nanofibers. Polymer nanofibers will also be produced using the interfacial polymerization technique. Crossed polymer nanofibers will also be studied in order to understand the electrical properties of the resulting nanojunction, and how to join nanofibers together to form multiterminal devices and ultimately complex circuits. The intellectual merit of this proposal is the ease with which nanofibers of conducting polymers can be prepared using the electrospinning technique or the interfacial polymerization technique as compared to other complex methods used to prepare for example carbon nanotubes. The processing and fabrication of devices based on conducting polymers is relatively easy and cheap. This has the potential of being able to fabricate large surface area flexible electronic devices. We will also use a biased AFM tip to locally probe (local gating) the conduction along the length of the polymer nanofiber in order to study the role of defects on electrical conduction and hence be able to shed additional light on the metallic state in conducting polymers. The use of the AFM as an active instrument in the electrical characterization of individual polymer nanofibers and crossed nanofibers has not been studied in detail as compared to carbon nanotubes and so the local gating effect proposed with the AFM is could lead to new results and suggest new experimental methods (using the AFM) of studying conducting polymers. The broader impact of this proposal is significant. All of the experiments proposed are within the intellectual grasp of undergraduate students and are also aimed at motivating the students to pursue graduate studies in science and engineering. Modified experiments based on the proposed research are planned to be included into the Intermediate Laboratory course that the PI has taught for the last five years thus integrating research and education. The instrument requested in this proposal will strengthen the institutional infrastructure, increase faculty collaboration and also have a broader impact of improving the research facilities on the South-East part of the island. This proposal will also increase the number of undergraduate students that participate in scientific research and who are underrepresented in the fields of science and engineering. Finally, the PI and his Departmental colleagues have written a proposal to the UPR board of directors to begin a new Master's program in Materials Science. This program will be unique on the island. By improving the research infrastructure and enhancing research collaboration within the Department, this proposal will help us reach a critical mass of faculty that are active in research and hence boost our chances of having a successful MS program in Materials Science.
该项目始于三年前,由NSF资助,用于制备导电聚合物纳米纤维,基于这些纳米纤维的设备制造,以及激励本科生攻读科学和工程研究生学位。采用静电纺丝技术制备了纳米纤维。在这项更新提案中,我们将扩展过去在基于聚合物纳米纤维的器件制造方面所做的工作,还包括使用原子力显微镜(AFM)在纳米级水平上探测这些导电聚合物纳米纤维的电荷传输特性。聚合物纳米纤维也将使用界面聚合技术生产。交叉聚合物纳米纤维也将进行研究,以了解所产生的纳米结的电性能,以及如何将纳米纤维连接在一起,形成多终端设备和最终复杂的电路。该建议的智力优点是与用于制备例如碳纳米管的其他复杂方法相比,使用静电纺丝技术或界面聚合技术可以容易地制备导电聚合物的纳米纤维。基于导电聚合物的器件的加工和制造相对容易且便宜。这具有能够制造大表面积柔性电子器件的潜力。我们还将使用一个偏置的原子力显微镜尖端,以局部探测(局部门控)的传导沿着的长度的聚合物导电,以研究的作用,导电缺陷,从而能够在导电聚合物的金属状态下,脱落额外的光。与碳纳米管相比,使用原子力显微镜作为单个聚合物纳米纤维和交叉纳米纤维的电表征的主动仪器尚未进行详细研究,因此原子力显微镜提出的局部门控效应可能会导致新的结果并提出新的实验方法(使用原子力显微镜)研究导电聚合物。这一提议的广泛影响是重大的。所有提出的实验都在本科生的智力掌握范围内,也旨在激励学生攻读科学和工程研究生课程。计划将基于拟议研究的修改实验纳入PI在过去五年中教授的中级实验室课程,从而将研究和教育结合起来。本提案中要求的工具将加强体制基础设施,增加教师合作,并对改善该岛东南部的研究设施产生更广泛的影响。这一提议还将增加参与科学研究的本科生人数,而这些本科生在科学和工程领域的代表性不足。最后,PI和他的部门同事写了一份建议,董事会的普遍定期审议开始在材料科学的新的硕士课程。这将是岛上独一无二的。通过改善研究基础设施和加强部门内的研究合作,该提案将帮助我们达到活跃于研究的教师的临界质量,从而提高我们在材料科学中成功的MS计划的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Pinto其他文献

Nicholas Pinto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Pinto', 18)}}的其他基金

RUI: Electroactive Composites of Biosourced Polymers, and Conducting Polymers Polymerized in a Confined Environment
RUI:生物来源聚合物的电活性复合材料和在密闭环境中聚合的导电聚合物
  • 批准号:
    1800262
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RUI:Dielectric Permittivity and Charge Transport in Electroactive Polymer Nanofibers: Motivating Undergraduates to Pursue Graduate Studies in Materials Science
RUI:电活性聚合物纳米纤维中的介电常数和电荷传输:激励本科生攻读材料科学研究生
  • 批准号:
    1360772
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RUI:Conducting, Semiconducting and Ferroelectric Polymer Nanofibers for Electronic Device Fabrication: Motivating Undergraduate Students to pursue Higher Education
RUI:用于电子设备制造的导电、半导体和铁电聚合物纳米纤维:激励本科生接受高等教育
  • 批准号:
    0965023
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RUI: Conducting Polymer Nanofibers for Device and Sensor Applications: Motivating undergraduate Students into Research in Materials Science
RUI:用于设备和传感器应用的导电聚合物纳米纤维:激励本科生进行材料科学研究
  • 批准号:
    0703544
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
IMR: Acquisition Of Complimentary Equipment To Enhance Student Training In Nanoscale Materials Research
IMR:购买免费设备以加强纳米材料研究方面的学生培训
  • 批准号:
    0412926
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
NUE: Integration of Nanoscience into the Undergraduate Curriculum: From Fabrication to Practical Applications of Nanodevices
NUE:将纳米科学融入本科课程:从纳米器件的制造到实际应用
  • 批准号:
    0407137
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RUI: Electrostatic Generation and Characterization of Conducting Polymer Nanofibers: Motivating Undergraduate Students towards Research in Materials Science
RUI:导电聚合物纳米纤维的静电产生和表征:激励本科生进行材料科学研究
  • 批准号:
    0098603
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

ERI: Enabling tunable electronic device fabrication on flexible substrates using Barium Strontium Titanate (BST) printable ink development
ERI:使用钛酸锶钡 (BST) 可印刷油墨开发,在柔性基板上实现可调电子设备制造
  • 批准号:
    2301693
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Cosmic ray immunity of silicon carbide power electronic devices. Category Microelectronic device technology - Energy
碳化硅电力电子器件的宇宙射线抗扰度。
  • 批准号:
    2871797
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Improving organic electronic devices through multifunctional additives and device engineering
通过多功能添加剂和器件工程改进有机电子器件
  • 批准号:
    547704-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Use of Administrative Health Data to Assess the Feasibility of a Surveillance System for Cardiac Implantable Electronic Device Infections: An Alberta Pilot
使用行政健康数据评估心脏植入电子设备感染监测系统的可行性:艾伯塔省试点
  • 批准号:
    475146
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Operating Grants
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
  • 批准号:
    RGPIN-2020-06137
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Cellar differentiation on the electronic semiconductor device induced by the electric stimulation
电刺激诱导电子半导体器件的细胞分化
  • 批准号:
    22K18976
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structure-functional property-device performance relationships in electronic and energy materials and devices
电子和能源材料及器件中的结构-功能特性-器件性能关系
  • 批准号:
    RGPIN-2022-04640
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Small self-contained device for performing double sided SMT PCB solder printing, component pick and place and reflow operations for prototyping and low to mid-scale manufacturing of complex electronic hardware
小型独立设备,用于执行双面 SMT PCB 焊料印刷、元件拾取和放置以及回流焊操作,以进行复杂电子硬件的原型设计和中低规模制造
  • 批准号:
    10041225
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
Elucidation of Collective Electronic Phase Transition Induced at Device Interfaces Based on Correlated Oxides
基于相关氧化物的器件界面处诱导的集体电子相变的阐明
  • 批准号:
    21K20498
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Low Dimensional Electronic Device Fabrication at Low Cost over Large Areas: Follow-on
大面积低成本低维电子器件制造:后续
  • 批准号:
    EP/W009757/1
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了