FRG: High Pressure Phase Transformations of Silicon, Germanium and Silicon Nitride

FRG:硅、锗和氮化硅的高压相变

基本信息

  • 批准号:
    0403650
  • 负责人:
  • 金额:
    $ 57.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2006-12-31
  • 项目状态:
    已结题

项目摘要

The objective of the proposed research program is to establish an interdisciplinary group of researchers from UN-Charlotte, NCSU and U TN with the necessary range of expertise to characterize the role and influence of the high pressure phase transformations of silicon, germanium, and silicon nitride during manufacturing processing. It is envisaged that this material behavior may be exploited to improve the manufacturing processes by increasing yields, decreasing defects, and reducing the manufacturing costs of devices and products manufactured from these materials. The research plan proposes to extend significantly the understanding of the fundamental principles and mechanics of the deformation and machining of these materials. The high-pressure phase transformations that occur during machining of silicon, germanium, and silicon nitride are a recently discovered manufacturing process mechanism. Existing scientific and engineering models do not include this important effect. It has been suggested that the knowledge of the existence of the high-pressure metallic phase of silicon "has about it the unmistakable scent of a major advance: it is likely to lead to a host of consequential researches". This knowledge is a major breakthrough for the semiconductor and optical research and materials' community. The use of the high-pressure phase transformations of these materials to improve the manufacturing process is a strategic change in the basic conception of the fundamental material process mechanisms. The necessary conditions for exploiting the high-pressure phase transformation of semiconductors and ceramics will be evaluated. This research will advance the knowledge of the mechanics of these materials and permit manufacturers to hurdle the present obstacles that confront them as they attempt to produce products of higher precision and lower cost. The high pressure phase transformation work on these materials promises to be applicable to other engineering ceramics, such as silicon carbide, and to manufacturing processes such as slicing, grinding, lapping and polishing. The high-pressure phase transformation represents a new means for controlling materials, manufacturing processes, and equipment to produce the desired end effect or product. The global importance of semiconductors and ceramics has led to extensive research into the nature of surface deformation as a consequence of materials processes such as machining, grinding, lapping and polishing. With the exception of steels, semiconductors and their various physical properties as the target for research are unsurpassed in terms of human effort invested. In spite of this a detailed knowledge of the physical processes involved in elastic and more so plastic deformation is still at issue. Based on accumulated knowledge it is recognized that the high-pressure phase transformations of silicon (Si), germanium (Ge), and silicon nitride (Si3N4) are responsible for their ductile material behavior during mechanical deformation-based material fabrication processes. The proposed team-based project will provide the direction, focus and synergy needed to successfully bring current knowledge of the influence of the high pressure phase transformation to the forefront of research activities in such areas as materials, tribology, and precision engineering. Through the proposed multi-university small group effort our effectiveness is enhanced by providing for the extension of the basic knowledge and potential relevance of the high pressure phase of these materials to applications involving friction, wear and precision machining. This small group of researchers will provide a coordinated and integrated resource group to industry. The group will provide a reference source for information and expertise on material processing of silicon, germanium and silicon nitride.
拟议的研究计划的目标是建立一个跨学科的研究人员小组,来自UN-Charlotte,NCSU和U TN,具有必要的专业知识,以表征硅,锗和氮化硅在制造过程中的高压相变的作用和影响。 可以设想,可以利用这种材料行为来通过增加产率、减少缺陷和降低由这些材料制造的器件和产品的制造成本来改进制造工艺。 该研究计划提出要大大扩展对这些材料的变形和加工的基本原理和力学的理解。 在硅、锗和氮化硅的加工过程中发生的高压相变是最近发现的制造工艺机制。 现有的科学和工程模型不包括这一重要效应。 有人认为,硅的高压金属相的存在的知识“有一个重大进步的明确气味:它可能导致大量的重要研究”。这些知识是半导体和光学研究以及材料界的重大突破。 利用这些材料的高压相变来改进制造工艺是基本材料加工机制基本概念的战略性变革。 将评估利用半导体和陶瓷高压相变的必要条件。 这项研究将促进这些材料的力学知识,并允许制造商克服目前面临的障碍,因为他们试图生产更高精度和更低成本的产品。 这些材料的高压相变工作有望适用于其他工程陶瓷,如碳化硅,以及制造工艺,如切片,研磨,研磨和抛光。 高压相变代表了一种控制材料、制造工艺和设备以产生所需最终效果或产品的新手段。 半导体和陶瓷的全球重要性导致了对表面变形性质的广泛研究,这些变形是材料加工,如机械加工,研磨,研磨和抛光的结果。 除了钢之外,半导体及其各种物理特性作为研究对象,在人力投入方面是无与伦比的。尽管如此,关于弹性变形和塑性变形中涉及的物理过程的详细知识仍然是有争议的。 基于积累的知识,认识到硅(Si)、锗(Ge)和氮化硅(Si 3 N4)的高压相变是它们在基于机械变形的材料制造工艺期间的延展性材料行为的原因。 拟议的基于团队的项目将提供成功地将高压相变影响的现有知识带到材料,摩擦学和精密工程等领域研究活动的最前沿所需的方向,重点和协同作用。 通过拟议的多所大学的小组努力,我们的有效性得到提高,提供的基础知识和潜在的相关性,这些材料的高压阶段的应用,涉及摩擦,磨损和精密加工。 这个研究小组将为工业界提供一个协调和综合的资源小组。 该小组将为硅、锗和氮化硅材料加工的信息和专业知识提供参考来源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Patten其他文献

Evaluation of an Instrument for Nanomachining and Nanometrology
纳米加工和纳米计量仪器的评估
Patterns of migration and movement of labour to three pre-industrial East Anglian towns
三个前工业化东盎格鲁城镇的移民和劳动力流动模式
  • DOI:
    10.1016/0305-7488(76)90250-4
  • 发表时间:
    1976
  • 期刊:
  • 影响因子:
    1
  • 作者:
    John Patten
  • 通讯作者:
    John Patten
Neurological Differential Diagnosis: An Illustrated Approach
神经系统鉴别诊断:图解方法
  • DOI:
  • 发表时间:
    1977
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Patten
  • 通讯作者:
    John Patten
An Analysis of the Geographic, Facility, and Technological Patterns of Indianapolis Public Library Patrons
印第安纳波利斯公共图书馆顾客的地理、设施和技术模式分析
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura Littlepage;E. Kramer;John Patten
  • 通讯作者:
    John Patten

John Patten的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Patten', 18)}}的其他基金

PFI:AIR - TT: Micro-Laser Assisted Drilling
PFI:AIR - TT:微型激光辅助钻孔
  • 批准号:
    1445017
  • 财政年份:
    2014
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
I-Corps: Micro Laser Assisted Machining Technologies
I-Corps:微型激光辅助加工技术
  • 批准号:
    1237113
  • 财政年份:
    2012
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
Micro Laser Assisted Machining of Semiconductors and Ceramics
半导体和陶瓷的微激光辅助加工
  • 批准号:
    0757339
  • 财政年份:
    2008
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
MRI: Acquistion of Tribometer for Manufacturing/Mechanical Engineering and Materials Research and Education
MRI:采购摩擦计用于制造/机械工程和材料研究与教育
  • 批准号:
    0420482
  • 财政年份:
    2004
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
FRG: High Pressure Phase Transformations of Silicon, Germanium and Silicon Nitride
FRG:硅、锗和氮化硅的高压相变
  • 批准号:
    0203552
  • 财政年份:
    2002
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Continuing Grant
Japan-JSPS Fellowship: Machining of Ceramics
日本-JSPS 奖学金:陶瓷加工
  • 批准号:
    0225024
  • 财政年份:
    2002
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant

相似海外基金

Unlocking exceptional properties through pressure-induced phase transitions
通过压力诱导的相变释放卓越的性能
  • 批准号:
    DP240101678
  • 财政年份:
    2024
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Discovery Projects
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
  • 批准号:
    2246991
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
RUI: Innovative Simulations to Study Pressure Effects on Fundamental Gas-Phase Chemical Processes
RUI:创新模拟研究压力对基本气相化学过程的影响
  • 批准号:
    2247669
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Standard Grant
SBIR Phase II: A Beat-to-Beat Blood Pressure Monitor Using Micro-Nanoscale Wrinkled Functional Materials
SBIR II 期:使用微纳米皱纹功能材料的逐搏血压监测仪
  • 批准号:
    2213169
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Cooperative Agreement
Elucidation of polymorphs and novel properties of SiGe alloys developed by high-pressure phase transformations
阐明高压相变开发的 SiGe 合金的多晶型和新特性
  • 批准号:
    23H01712
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Time phase analysis of ventilator induced lung injury and optimization of positive end-expiratory pressure: four-dimensional CT study
呼吸机所致肺损伤的时相分析和呼气末正压优化:四维 CT 研究
  • 批准号:
    23K08466
  • 财政年份:
    2023
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust and Accurate Equation of State Framework for Modeling Phase Behavior of Reservoir Fluids under Extreme Pressure/Temperature Conditions
用于模拟极压/温度条件下储层流体相行为的稳健且准确的状态方程框架
  • 批准号:
    RGPIN-2020-04571
  • 财政年份:
    2022
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Discovery Grants Program - Individual
Hysteresis of two-phase flows in porous and fractured media: From micro-scale Haines jumps to macro-scale pressure-saturation curves
多孔和裂缝介质中两相流的滞后:从微观尺度海恩斯跳跃到宏观尺度压力饱和曲线
  • 批准号:
    EP/V050613/1
  • 财政年份:
    2022
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Research Grant
Investigation of mixing and diffusion mechanisms with phase-separation of multi-component fluid under cryogenic high-pressure conditions
低温高压条件下多组分流体相分离的混合和扩散机制研究
  • 批准号:
    22H01686
  • 财政年份:
    2022
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
liquid phase epitaxy of nitride semiconductor thin films under an atmospheric pressure nitrogen ambience
大气压氮气气氛下氮化物半导体薄膜的液相外延
  • 批准号:
    22K04954
  • 财政年份:
    2022
  • 资助金额:
    $ 57.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了