Nonlinear Dynamics of Fluid Mixing and Flow Separation
流体混合和流动分离的非线性动力学
基本信息
- 批准号:0404845
- 负责人:
- 金额:$ 23.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal discusses the use of nonlinear dynamical systems theory in solving several long-standing problems of fluid mixing and flow separation. On the mathematical side, it will advance the theory of nonhyperbolic invariant manifolds, inertial manifolds, advection-diffusion and dynamo equations, finite-time invariant sets, stability of nonautonomous systems, and aperiodic averaging. On the fluid mechanical side, the proposed work will broaden the understanding of three-dimensional unsteady fluid separation, diffusive tracer mixing, the topology of three-dimensional vortices, and the origin of dynamo action in the induction equations.In a broader sense, the proposal describes new approaches to nonlinear dynamical phenomena in oceanic and aerodynamic flows. Such phenomena have traditionally been poorly understood, because advanced mathematical theories, notably dynamical systems theory, have been underutilized in their study. The investigator proposes new theoretical tools for describing how different substances mix, and how high-speed fluid separates from boundaries. The proposal discusses how the results can improve ocean feature detection and prediction, advance aerodynamic design and aviation technology, and impact the design of efficient chemical mixers.
本文讨论了非线性动力系统理论在解决流体混合和流动分离中几个长期存在的问题中的应用。在数学方面,它将推进非双曲不变流形、惯性流形、平流扩散和发电机方程、有限时不变集、非自治系统的稳定性和非周期平均的理论。在流体力学方面,所提出的工作将拓宽对三维非定常流体分离、扩散示踪剂混合、三维涡旋拓扑结构以及感应方程中发电机作用起源的理解。在更广泛的意义上,该建议描述了海洋和气动流动中非线性动力学现象的新方法。由于先进的数学理论,特别是动力系统理论在这些现象的研究中没有得到充分的利用,传统上对这些现象的理解很少。研究者提出了新的理论工具来描述不同的物质如何混合,以及高速流体如何从边界分离。该提案讨论了结果如何改进海洋特征检测和预测,推进气动设计和航空技术,并影响高效化学混合器的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Haller其他文献
Response to “Discussion of S. Ponsioen, S. Jain and G. Haller: ‘Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems’, Journal of Sound and Vibration 488, 2020, pages 1-23”
对“S. Ponsioen、S. Jain 和 G. Haller 的讨论:‘高维机械系统中的谱子流形模型简化与强迫响应计算’,《声学与振动杂志》488 卷,2020 年,第 1-23 页”的回应
- DOI:
10.1016/j.jsv.2024.118791 - 发表时间:
2025-02-17 - 期刊:
- 影响因子:4.900
- 作者:
Sten Ponsioen;Shobhit Jain;George Haller - 通讯作者:
George Haller
Data-Driven reduction of the finite-element model of a Tribomechadynamics benchmark problem
- DOI:
10.1007/s11071-025-11378-8 - 发表时间:
2025-05-31 - 期刊:
- 影响因子:6.000
- 作者:
Ahmed Amr Morsy;Zhenwei Xu;Paolo Tiso;George Haller - 通讯作者:
George Haller
Vorticity alignment with Lyapunov vectors and rate-of-strain eigenvectors
涡度与李雅普诺夫向量和应变率特征向量对齐
- DOI:
10.1016/j.euromechflu.2024.02.003 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Encinas;George Haller - 通讯作者:
George Haller
Quasi-objective coherent structure diagnostics from single trajectories.
来自单一轨迹的准客观相干结构诊断。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.9
- 作者:
George Haller;N. Aksamit;A. Encinas - 通讯作者:
A. Encinas
Model Reduction to Spectral Submanifolds in Non-Smooth Dynamical Systems
非光滑动力系统中谱子流形的模型简化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Leonardo Bettini;Mattia Cenedese;George Haller - 通讯作者:
George Haller
George Haller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Haller', 18)}}的其他基金
Nonlinear Dynamical Systems Methods for Turbulence
湍流的非线性动力系统方法
- 批准号:
0233769 - 财政年份:2002
- 资助金额:
$ 23.77万 - 项目类别:
Continuing grant
Nonlinear Dynamical Systems Methods for Turbulence
湍流的非线性动力系统方法
- 批准号:
0102940 - 财政年份:2001
- 资助金额:
$ 23.77万 - 项目类别:
Continuing Grant
Invariant Manifolds and Complex Behavior in Nonlinear Physical Systems
非线性物理系统中的不变流形和复杂行为
- 批准号:
9800922 - 财政年份:1998
- 资助金额:
$ 23.77万 - 项目类别:
Standard Grant
Mathematical Sciences: "Geometric Methods and Their Applications for Multi-Dimensional Resonant Dynamical Systems
数学科学:“多维共振动力系统的几何方法及其应用”
- 批准号:
9501239 - 财政年份:1995
- 资助金额:
$ 23.77万 - 项目类别:
Continuing Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
- 批准号:
2204614 - 财政年份:2022
- 资助金额:
$ 23.77万 - 项目类别:
Standard Grant
Parameterization and Reduction for Nonlinear Stochastic Systems with Applications to Fluid Dynamics
非线性随机系统的参数化和简化及其在流体动力学中的应用
- 批准号:
2108856 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Standard Grant
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
$ 23.77万 - 项目类别:
Standard Grant
NONLINEAR DYNAMICS OF BLUFF-BODY WAKES AND FLUID-STRUCTURE INSTABILITIES: A SYMMETRY-GROUP BASED APPROACH
钝体尾流和流结构不稳定性的非线性动力学:基于对称群的方法
- 批准号:
RGPIN-2015-06604 - 财政年份:2019
- 资助金额:
$ 23.77万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Fluid and Nonlinear Waves
流体动力学和非线性波
- 批准号:
1900083 - 财政年份:2019
- 资助金额:
$ 23.77万 - 项目类别:
Continuing Grant
NONLINEAR DYNAMICS OF BLUFF-BODY WAKES AND FLUID-STRUCTURE INSTABILITIES: A SYMMETRY-GROUP BASED APPROACH
钝体尾流和流结构不稳定性的非线性动力学:基于对称群的方法
- 批准号:
RGPIN-2015-06604 - 财政年份:2018
- 资助金额:
$ 23.77万 - 项目类别:
Discovery Grants Program - Individual
UNSflow: A low-order, open-source solver for problems that involve unsteady and nonlinear fluid dynamics
UNSflow:一个低阶开源求解器,用于解决涉及不稳定和非线性流体动力学的问题
- 批准号:
EP/R008035/1 - 财政年份:2018
- 资助金额:
$ 23.77万 - 项目类别:
Research Grant
NONLINEAR DYNAMICS OF BLUFF-BODY WAKES AND FLUID-STRUCTURE INSTABILITIES: A SYMMETRY-GROUP BASED APPROACH
钝体尾流和流结构不稳定性的非线性动力学:基于对称群的方法
- 批准号:
RGPIN-2015-06604 - 财政年份:2017
- 资助金额:
$ 23.77万 - 项目类别:
Discovery Grants Program - Individual
New development of mathematical theory of turbulence by collaboration of the nonlinear analysis and computational fluid dynamics
非线性分析与计算流体动力学相结合的湍流数学理论的新发展
- 批准号:
16H06339 - 财政年份:2016
- 资助金额:
$ 23.77万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
NONLINEAR DYNAMICS OF BLUFF-BODY WAKES AND FLUID-STRUCTURE INSTABILITIES: A SYMMETRY-GROUP BASED APPROACH
钝体尾流和流结构不稳定性的非线性动力学:基于对称群的方法
- 批准号:
RGPIN-2015-06604 - 财政年份:2016
- 资助金额:
$ 23.77万 - 项目类别:
Discovery Grants Program - Individual