Invariant Manifolds and Complex Behavior in Nonlinear Physical Systems
非线性物理系统中的不变流形和复杂行为
基本信息
- 批准号:9800922
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-15 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In nonlinear evolutionary problems of physics, one is typically concerned with the analysis of observable dynamical behavior, which impacts large classes of initial states. Dynamical systems theory offers a powerful geometric tool, invariant manifolds, to tackle such problems. Invariant manifolds are capable of acting as organizing structures in the phase space of a system, as well as creating complex or chaotic behavior for sizable sets of initial conditions. Examples of these phenomena include chaotic mixing, fast energy transfer, and diffusion in finite dimensional systems, and jumping behavior and pulse generation in evolution equations. This proposal suggests novel extensions and new applications of invariant manifold theory in an array of areas, ranging from difficult open questions of applied analysis to concrete problems in laser optics, oceanography, and atmospheric science.Most phenomena in nature are dynamic in nature, i.e., one observes them change in time. Such phenomena include ocean currents, atmospheric events, and the motion of planets. The mathematical discipline that deals with the description of these time-varying phenomena is called dynamical systems theory. The main concern of this theory is to understand the evolution of the studied phenomenon in terms of mathematical formulas and predict its future for long times. This theory has already showed its power in several applications, but has not been mature enough to deal with large-scale physical processes. This proposal suggests the development of several new tools in order to make dynamical systems theory applicable to highly important problems of laser optics, oceanography and atmospheric science. For example, one of the suggested directions of research is aimed at the analysis and prediction of the motion of large eddies in the ocean. Another aspect of the proposed work will provide scientifically solid estimates for the rate of ozone depletion near the Antarctic polar vortex.
在物理学的非线性演化问题中,人们通常关注可观察的动力学行为的分析,这影响了大量的初始状态。动力系统理论提供了一个强大的几何工具,不变流形,来解决这些问题。不变流形能够在系统的相空间中充当组织结构,以及在相当大的初始条件下创建复杂或混沌行为。这些现象的例子包括有限维系统中的混沌混合、快速能量传递和扩散,以及演化方程中的跳跃行为和脉冲产生。这一建议提出了新的扩展和新的应用不变流形理论在一系列领域,从困难的开放问题的应用分析,以具体的问题,在激光光学,海洋学和大气科学。大多数现象在性质上是动态的,即,人们观察到它们随时间而变化。这些现象包括洋流、大气事件和行星的运动。描述这些时变现象的数学学科称为动力系统理论。该理论的主要关注点是用数学公式来理解所研究现象的演变,并预测其未来很长一段时间。这个理论已经在几个应用中显示了它的力量,但还不够成熟,无法处理大规模的物理过程。该建议建议开发几种新的工具,以便使动力系统理论适用于激光光学、海洋学和大气科学等非常重要的问题。例如,建议的研究方向之一是分析和预测海洋中大涡旋的运动。拟议工作的另一个方面将提供南极极涡附近臭氧消耗速率的科学可靠估计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Haller其他文献
Response to “Discussion of S. Ponsioen, S. Jain and G. Haller: ‘Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems’, Journal of Sound and Vibration 488, 2020, pages 1-23”
对“S. Ponsioen、S. Jain 和 G. Haller 的讨论:‘高维机械系统中的谱子流形模型简化与强迫响应计算’,《声学与振动杂志》488 卷,2020 年,第 1-23 页”的回应
- DOI:
10.1016/j.jsv.2024.118791 - 发表时间:
2025-02-17 - 期刊:
- 影响因子:4.900
- 作者:
Sten Ponsioen;Shobhit Jain;George Haller - 通讯作者:
George Haller
Data-Driven reduction of the finite-element model of a Tribomechadynamics benchmark problem
- DOI:
10.1007/s11071-025-11378-8 - 发表时间:
2025-05-31 - 期刊:
- 影响因子:6.000
- 作者:
Ahmed Amr Morsy;Zhenwei Xu;Paolo Tiso;George Haller - 通讯作者:
George Haller
Vorticity alignment with Lyapunov vectors and rate-of-strain eigenvectors
涡度与李雅普诺夫向量和应变率特征向量对齐
- DOI:
10.1016/j.euromechflu.2024.02.003 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Encinas;George Haller - 通讯作者:
George Haller
Quasi-objective coherent structure diagnostics from single trajectories.
来自单一轨迹的准客观相干结构诊断。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.9
- 作者:
George Haller;N. Aksamit;A. Encinas - 通讯作者:
A. Encinas
Model Reduction to Spectral Submanifolds in Non-Smooth Dynamical Systems
非光滑动力系统中谱子流形的模型简化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Leonardo Bettini;Mattia Cenedese;George Haller - 通讯作者:
George Haller
George Haller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Haller', 18)}}的其他基金
Nonlinear Dynamics of Fluid Mixing and Flow Separation
流体混合和流动分离的非线性动力学
- 批准号:
0404845 - 财政年份:2004
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Nonlinear Dynamical Systems Methods for Turbulence
湍流的非线性动力系统方法
- 批准号:
0233769 - 财政年份:2002
- 资助金额:
$ 10.5万 - 项目类别:
Continuing grant
Nonlinear Dynamical Systems Methods for Turbulence
湍流的非线性动力系统方法
- 批准号:
0102940 - 财政年份:2001
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Geometric Methods and Their Applications for Multi-Dimensional Resonant Dynamical Systems
数学科学:“多维共振动力系统的几何方法及其应用”
- 批准号:
9501239 - 财政年份:1995
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
相似海外基金
Fukaya categories of complex symplectic manifolds
复辛流形的深谷范畴
- 批准号:
2305257 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pluripotential Theory and Random Geometry on Compact Complex Manifolds
紧复流形上的多势理论和随机几何
- 批准号:
2154273 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Invariant Metrics on Complex Manifolds
复杂流形上的不变度量
- 批准号:
2103608 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Classifications of compact complex manifolds admitting non-isomorphic endomorphisms
承认非同构自同态的紧复流形的分类
- 批准号:
20K03518 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis on complex manifolds
复杂流形的几何分析
- 批准号:
20H00116 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Complex Monge-Ampère equations and Calabi-Yau manifolds with singularities
复杂的 Monge-Ampère 方程和具有奇点的 Calabi-Yau 流形
- 批准号:
2260081 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Studentship
The Complex and Conformal Geometry of 4-Manifolds
4-流形的复杂共形几何
- 批准号:
1906267 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Model theory of fields and compact complex manifolds
场模型论和紧复流形
- 批准号:
RGPIN-2015-04155 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Grants Program - Individual
Geometry of the space of all variations of mixed Hodge structure over complex manifolds
复流形上混合Hodge结构所有变体的空间几何
- 批准号:
19H01787 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)