Relative Rapid Decay and Applications
相对快速的衰减和应用
基本信息
- 批准号:0405032
- 负责人:
- 金额:$ 9.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2006-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given a group, one can associate to it a group ring, which is formed from complex linear combinations of group elements. The idempotent conjecture is that if a group has no elements of finite order, then the only elements in the group ring which are equal to their own square should be zero or one. This is a completely algebraic statement, which can be re-phrased by saying that there are only trivial solutions to a certain finite set of equations. However, suitably completing the algebraic group ring can turn it into a geometric object, and the idempotent conjecture can be reformulated in geometric terms. If the group is commutative, the idempotent conjecture is known to be true, and to be equivalent to the connectedness of the n-dimensional torus. I propose to develop analytical tools related to the operator norm completion of the group ring to get a better understanding of a more general class of groups, which includes, for example, the special linear group SL(n,Z).Groups arise in many scientific fields because they encode symmetries ofphysical, biological or other systems, therefore it is important to studythem. It is impossible to say anything useful about all groups, so wedivide them into classes and study each class separately. I am interestedin classes of groups that arise as symmetries of geometric objects.Understanding something about the geometry of these objects often can betranslated into algebraic information about the group. I plan to developtools from algebra and analysis to study these geometric objects, with aparticular emphasis on understanding geometric properties which onlybecome apparent on a large scale.
给定一个群,人们可以将它与群环相关联,群环由群元素的复杂线性组合形成。幂等猜想是,如果一个群没有有限阶的元素,那么群环中唯一等于其自身平方的元素应该是零或一。这是一个完全代数的陈述,可以换句话说,对于某个有限的方程组,只有平凡的解。然而,适当地完成代数群环可以把它变成一个几何对象,幂等猜想可以在几何术语中重新表述。如果群是可交换的,则幂等猜想为真,并且等价于n维环面的连通性。我建议开发与群环的算子范数完备化相关的分析工具,以便更好地理解更一般的群类,例如,特殊的线性群SL(n,Z)。群出现在许多科学领域,因为它们编码了物理,生物或其他系统的对称性,因此研究它们很重要。不可能对所有的群体都说些有用的话,所以我们把他们分成几个班,分别研究每一个班。我对几何对象的对称性所产生的群的分类很感兴趣,对这些对象的几何学的理解通常可以转化为关于群的代数信息。我计划从代数和分析中开发工具来研究这些几何对象,特别强调理解只有在大规模上才变得明显的几何特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Indira Chatterji其他文献
Property (RD) for Cocompact Lattices in a Finite Product of Rank One Lie Groups with Some Rank Two Lie Groups
- DOI:
10.1023/a:1022184513930 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Indira Chatterji - 通讯作者:
Indira Chatterji
Indira Chatterji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Indira Chatterji', 18)}}的其他基金
CAREER: Tripodal Geometry and Applications
职业:三足几何及其应用
- 批准号:
0644613 - 财政年份:2007
- 资助金额:
$ 9.81万 - 项目类别:
Continuing Grant
Relative Rapid Decay and Applications
相对快速的衰减和应用
- 批准号:
0610386 - 财政年份:2005
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
相似国自然基金
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Expanding syphilis screening among pregnant women in Indonesia using the rapid dual test for syphilis & HIV with capacity building: The DUALIS Study
使用梅毒快速双重检测扩大印度尼西亚孕妇梅毒筛查
- 批准号:
MR/Y004825/1 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Research Grant
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
- 批准号:
MR/Y503381/1 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Research Grant
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Continuing Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Continuing Grant
I-Corps: Translation Potential of Rapid In-situ Forming Gel for Local Gene Delivery
I-Corps:快速原位形成凝胶用于局部基因传递的转化潜力
- 批准号:
2410778 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
RAPID: Immediate Responses during a Major Nighttime Tsunami Event
RAPID:重大夜间海啸事件期间的立即响应
- 批准号:
2420022 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
RAPID: Responses of Soil Organic Carbon Chemistry to Wildfires across a Rainfall Gradient
RAPID:土壤有机碳化学对降雨梯度范围内野火的响应
- 批准号:
2409879 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
- 批准号:
2401876 - 财政年份:2024
- 资助金额:
$ 9.81万 - 项目类别:
Standard Grant