The Dynamics of Flame Fronts - Asymptotics and Computations
火焰锋面动力学 - 渐近学和计算
基本信息
- 批准号:0405129
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to gain fundamental understanding of the complex processes occurring in practical combustion systems through mathematical modeling. The work is concerned with the propagation of multi-dimensional flame fronts with emphasis on their interaction with the underlying flow. One set of problems address the propagation of flames in channels and cracks, which is of considerable interest in a number of applications where the penetration of the flame may be favorable, as in miniaturized combustion devices, or detrimental, as in crevice volumes of an internal combustion engine. The second set of problems is concerned with edge-flames, which are of fundamental importance to the phenomena of flame stabilization and liftoff occurring in many applications such as household burners and furnaces. Edge-flames play an important role in the evolution of holes created on the flame interface because of high strain or excessive heat loss, and thus are fundamental to the dynamics of turbulent diffusion flames. Understanding of these complex phenomena will be achieved by constructing models that contain the necessary physical ingredients of the problem at hand, constructing solutions to the mathematical models by means of asymptotic techniques and numerical methods, and comparing the results with experimental observations. Combustion provides the majority of the energy that we consume today. It is important to ensure that combustion processes are utilized in the most efficient way and in such a way to minimize their adverse effect on the environment. This research will provide fundamental understanding of the dynamics of flame fronts, the interaction of a flame with the underlying flow field, inflammability limits, and intrinsic instabilities associated with the burning process. This knowledge will have an effect on future industrial combustion design and emerging micropropulsion technologies, resulting in improved energy utility and reduction of pollutants. Students trained through involvement in this research project will become valuable to the educational and research needs of the country.
本研究的目的是通过数学建模获得对实际燃烧系统中发生的复杂过程的基本理解。 这项工作涉及多维火焰前锋的传播,重点是它们与底层流动的相互作用。 一组问题解决了火焰在通道和裂缝中的传播,这在许多应用中是相当令人感兴趣的,其中火焰的穿透可能是有利的,如在小型化燃烧装置中,或者是有害的,如在内燃机的缝隙体积中。 第二组问题与边缘火焰有关,边缘火焰对于在诸如家用燃烧器和熔炉的许多应用中发生的火焰稳定和提升现象具有根本重要性。 边缘火焰在由于高应变或过度热损失而在火焰界面上产生的孔的演变中起着重要作用,因此是湍流扩散火焰动力学的基础。 理解这些复杂的现象将通过构建包含手头问题的必要物理成分的模型,通过渐近技术和数值方法构建数学模型的解决方案,并将结果与实验观察进行比较来实现。 燃烧提供了我们今天消耗的大部分能量。重要的是要确保以最有效的方式利用燃烧过程,并尽量减少其对环境的不利影响。 这项研究将提供基本的了解火焰前锋的动态,火焰与底层流场的相互作用,可燃性限制,以及与燃烧过程相关的内在不稳定性。 这些知识将对未来的工业燃烧设计和新兴的微推进技术产生影响,从而提高能源利用率并减少污染物。 通过参与这一研究项目培训的学生将对该国的教育和研究需求具有价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moshe Matalon其他文献
Critical conditions for flame acceleration in long adiabatic channels closed at their ignition end
- DOI:
10.1016/j.proci.2016.06.024 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Vadim N. Kurdyumov;Moshe Matalon - 通讯作者:
Moshe Matalon
Intrinsic characteristics of asymmetric edge flames: Effects of stoichiometry on edge speed and temperature
- DOI:
10.1016/j.proci.2024.105670 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Zhanbin Lu;Moshe Matalon - 通讯作者:
Moshe Matalon
Morphology of wrinkles along the surface of turbulent Bunsen fames - their amplication and advection due to the Darrieus-Landau instability
湍流本生灯表面的皱纹形态——由于达里厄斯-朗道不稳定性导致的皱纹的放大和平流
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Meng Zhang;Advitya Patyal;Zuohua Huang;Moshe Matalon - 通讯作者:
Moshe Matalon
Diffusion flames in condensed-phase energetic materials: Application to Titanium–Boron combustion
- DOI:
10.1016/j.combustflame.2015.08.023 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Sushilkumar P. Koundinyan;John B. Bdzil;Moshe Matalon;D. Scott Stewart - 通讯作者:
D. Scott Stewart
Edge flames in mixing layers: Effects of heat recirculation through thermally active splitter plates
混合层中的边缘火焰:通过热活性分流板进行热再循环的影响
- DOI:
10.1016/j.combustflame.2020.04.010 - 发表时间:
2020-07 - 期刊:
- 影响因子:4.4
- 作者:
Zhanbin Lu;Moshe Matalon - 通讯作者:
Moshe Matalon
Moshe Matalon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moshe Matalon', 18)}}的其他基金
Outwardly Expanding Premixed Flames in Turbulent Media
湍流介质中向外扩展的预混火焰
- 批准号:
1911530 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Propagation of corrugated flames in the flamelet regime
小火焰状态下波纹火焰的传播
- 批准号:
1067259 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Modeling of Combustion Phenomena at the Microscale
微尺度燃烧现象的数学模型
- 批准号:
0708588 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
The Dynamics of Flame Fronts - Asymptotics and Computations
火焰锋面动力学 - 渐近学和计算
- 批准号:
0733145 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical Modeling of Flame Propagation in the Flamelet Regime
小火焰状态下火焰传播的数值模拟
- 批准号:
0733146 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Numerical Modeling of Flame Propagation in the Flamelet Regime
小火焰状态下火焰传播的数值模拟
- 批准号:
0552140 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Dynamics of Premixed and Diffusion Flames
预混火焰和扩散火焰的非线性动力学
- 批准号:
0072588 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Premixed Flame Propagation in the Flamelet Regime
小火焰状态下的预混合火焰传播
- 批准号:
0074320 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Evolution Equations in Modeling Chemically Reacting Flows
化学反应流建模中的演化方程
- 批准号:
9703716 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Flame-Retarding and Mechanically Resilient Elastomer Composites
阻燃和机械弹性弹性体复合材料
- 批准号:
LP230100229 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Launching Recycled Flame Retardant Silicone Rubber Manufactured Products into the Aerospace Sector
将再生阻燃硅橡胶制品引入航空航天领域
- 批准号:
10076170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Future Leaders for Advanced Air Mobility Excellence (FLAME)
先进空中交通卓越的未来领导者 (FLAME)
- 批准号:
10063769 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
CAREER: Atmospheric-Pressure Manufacturing of Nanocrystalline Diamonds by Plasma-Assisted Flat Flame Vapor Deposition
职业:通过等离子体辅助平面火焰气相沉积法常压制造纳米晶金刚石
- 批准号:
2238235 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Combustion and flame spread physics over multi-layer flammable material in microgravity
微重力下多层易燃材料的燃烧和火焰传播物理学
- 批准号:
22KF0008 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Application of high-speed flame propagation mechanism by vortex filament soliton to hydrogen and ammonia combustion fields toward decarbonization
涡丝孤子高速火焰传播机制在氢氨燃烧领域的脱碳应用
- 批准号:
23K03687 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Maternal Transfer of Oxytocin and Thyroid-disrupting Indoor Flame Retardants Affecting Offspring Social Brain
催产素和甲状腺干扰室内阻燃剂的母体转移影响后代社交大脑
- 批准号:
10607974 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of high-performance flame-retardant one-component epoxy resins
高性能阻燃单组份环氧树脂的研制
- 批准号:
DE230100616 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
The interaction of perinatal organophosphate flame retardant exposure and adult chronic stress on cognitive processing
围产期有机磷阻燃剂暴露与成人慢性应激对认知加工的相互作用
- 批准号:
10449738 - 财政年份:2023
- 资助金额:
-- - 项目类别: