Evolution Equations in Modeling Chemically Reacting Flows

化学反应流建模中的演化方程

基本信息

  • 批准号:
    9703716
  • 负责人:
  • 金额:
    $ 12.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-01 至 2000-12-31
  • 项目状态:
    已结题

项目摘要

Matalon 9703716 The objectives of the proposed work is to derive and analyze simple mathematical models of reacting flow systems by means of asymptotic and perturbation methods supplemented by numerical computations. The problems that will be addressed are related to phenomena that have been observed experimentally and are not yet completely understood. They fall in two categories: the first class of problems is concerned with premixed flames propagating in tubes, while the second class is concerned with diffusion flames (non-premixed combustion) that result from evaporating liquid fuels. The mathematical formulation of these problems can be reduced to a single, or a couple, of evolution equations that contain the main ingredients of the physical problem and are to be solved numerically. For premixed flames propagating in tubes the evolution equation takes the form of an integro-differential equation that describes the instantaneous shape and location of the flame front. For the burning of liquid films one finds, in general, two equations: one for the dynamics of the interface between the liquid and gas phases, and the other for the diffusion flame sheet which is the interface where the fuel vapor burns with the ambient oxidant. Combustion processes are extremely complicated; they encompass subjects concerned with energy generation and heat transfer, rates and mechanisms of chemical reactions, fluid flow and mass transport. They cover a broad range of important engineering technologies as well as topics of primary societal and environmental concerns. A fundamental way to gain understanding into the complex phenomena that one observe in various combustion systems is through mathematical modeling. This approach enables one to identify the underlying physical mechanisms responsible for the observed phenomenon, to study the interaction between the various physical parameters and to explore whether this interaction leads to the observed behavior. A deep understandin g often leadq to suggestions of new directions for experiments and design. The problems in this study are concerned with premixed flames, relevant to internal combustion engines and aerospace propulsion systems where the fuel and oxidant are intimately mixed prior to ignition, and combustion of liquid fuels, relevant to accidental spillage and fire spread where, under special circumstances, burning may occur with the available ambient oxidant.
所提出的工作的目标是推导和分析反应流系统的简单数学模型,通过渐近和摄动方法辅以数值计算。将要讨论的问题与实验观察到的现象有关,但尚未完全理解。它们分为两类:第一类问题涉及在管道中传播的预混火焰,而第二类问题涉及由液体燃料蒸发引起的扩散火焰(非预混燃烧)。这些问题的数学公式可以简化为一个或几个演化方程,这些方程包含了物理问题的主要成分,并将用数值方法解决。对于在管内传播的预混火焰,演化方程采用描述火焰锋面瞬时形状和位置的积分-微分方程的形式。对于液体膜的燃烧,通常有两个方程:一个是液体和气相之间界面的动力学方程,另一个是扩散火焰片的方程,它是燃料蒸气与周围氧化剂燃烧的界面。燃烧过程极其复杂;它们包括与能量产生和热传递、化学反应的速率和机制、流体流动和质量传递有关的主题。它们涵盖了广泛的重要工程技术以及主要的社会和环境问题的主题。要理解在各种燃烧系统中观察到的复杂现象,一个基本方法是通过数学建模。这种方法使人们能够确定对所观察到的现象负责的潜在物理机制,研究各种物理参数之间的相互作用,并探索这种相互作用是否导致所观察到的行为。对它的深刻理解往往会为实验和设计提出新的方向。本研究中的问题与预混火焰有关,与内燃机和航空航天推进系统有关,其中燃料和氧化剂在点火前紧密混合,以及与液体燃料的燃烧有关,与意外溢出和火灾蔓延有关,在特殊情况下,可用的环境氧化剂可能发生燃烧。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moshe Matalon其他文献

Critical conditions for flame acceleration in long adiabatic channels closed at their ignition end
  • DOI:
    10.1016/j.proci.2016.06.024
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vadim N. Kurdyumov;Moshe Matalon
  • 通讯作者:
    Moshe Matalon
Intrinsic characteristics of asymmetric edge flames: Effects of stoichiometry on edge speed and temperature
  • DOI:
    10.1016/j.proci.2024.105670
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhanbin Lu;Moshe Matalon
  • 通讯作者:
    Moshe Matalon
Morphology of wrinkles along the surface of turbulent Bunsen fames - their amplication and advection due to the Darrieus-Landau instability
湍流本生灯表面的皱纹形态——由于达里厄斯-朗道不稳定性导致的皱纹的放大和平流
Diffusion flames in condensed-phase energetic materials: Application to Titanium–Boron combustion
  • DOI:
    10.1016/j.combustflame.2015.08.023
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sushilkumar P. Koundinyan;John B. Bdzil;Moshe Matalon;D. Scott Stewart
  • 通讯作者:
    D. Scott Stewart
Edge flames in mixing layers: Effects of heat recirculation through thermally active splitter plates
混合层中的边缘火焰:通过热活性分流板进行热再循环的影响
  • DOI:
    10.1016/j.combustflame.2020.04.010
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Zhanbin Lu;Moshe Matalon
  • 通讯作者:
    Moshe Matalon

Moshe Matalon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moshe Matalon', 18)}}的其他基金

Outwardly Expanding Premixed Flames in Turbulent Media
湍流介质中向外扩展的预混火焰
  • 批准号:
    1911530
  • 财政年份:
    2020
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Propagation of corrugated flames in the flamelet regime
小火焰状态下波纹火焰的传播
  • 批准号:
    1067259
  • 财政年份:
    2011
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Mathematical Modeling of Combustion Phenomena at the Microscale
微尺度燃烧现象的数学模型
  • 批准号:
    0708588
  • 财政年份:
    2007
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
The Dynamics of Flame Fronts - Asymptotics and Computations
火焰锋面动力学 - 渐近学和计算
  • 批准号:
    0733145
  • 财政年份:
    2007
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Numerical Modeling of Flame Propagation in the Flamelet Regime
小火焰状态下火焰传播的数值模拟
  • 批准号:
    0733146
  • 财政年份:
    2007
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Numerical Modeling of Flame Propagation in the Flamelet Regime
小火焰状态下火焰传播的数值模拟
  • 批准号:
    0552140
  • 财政年份:
    2006
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
The Dynamics of Flame Fronts - Asymptotics and Computations
火焰锋面动力学 - 渐近学和计算
  • 批准号:
    0405129
  • 财政年份:
    2004
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics of Premixed and Diffusion Flames
预混火焰和扩散火焰的非线性动力学
  • 批准号:
    0072588
  • 财政年份:
    2000
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Premixed Flame Propagation in the Flamelet Regime
小火焰状态下的预混合火焰传播
  • 批准号:
    0074320
  • 财政年份:
    2000
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
The Dynamics of Premixed Flame Surfaces
预混合火焰表面的动力学
  • 批准号:
    9521022
  • 财政年份:
    1995
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant

相似海外基金

Population dynamics modeling via differential equations
通过微分方程进行种群动态建模
  • 批准号:
    572190-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.6万
  • 项目类别:
    University Undergraduate Student Research Awards
A numerical method for stochastic differential equations for interest rate modeling and regulation after the global financial crises of 2007-2008
2007-2008 年全球金融危机后利率建模和监管的随机微分方程数值方法
  • 批准号:
    21K03365
  • 财政年份:
    2021
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishing parameter estimation theory of stochastic differential equations for advanced modeling of life systems
建立生命系统高级建模的随机微分方程参数估计理论
  • 批准号:
    20K12059
  • 财政年份:
    2020
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building Community Through Systemic Initiative for Modeling Investigations and Opportunities with Differential Equations (SIMIODE)
通过微分方程对调查和机会进行建模的系统性举措来构建社区 (SIMIODE)
  • 批准号:
    1940532
  • 财政年份:
    2019
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Building Community Through Systemic Initiative for Modeling Investigations and Opportunities with Differential Equations (SIMIODE)
通过微分方程对调查和机会进行建模的系统性举措来构建社区 (SIMIODE)
  • 批准号:
    1724796
  • 财政年份:
    2018
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2018
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Multi-Scale Modeling of Biological Gels by Coupling Langevin Equations and Fractional Viscoelastic Constitutive Models
职业:通过耦合朗之万方程和分数粘弹性本构模型对生物凝胶进行多尺度建模
  • 批准号:
    1751339
  • 财政年份:
    2018
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Optimal Inference in model subject to changes and modeling in ecological systems via differential equations
受变化影响的模型的最优推理以及通过微分方程对生态系统进行建模
  • 批准号:
    RGPIN-2014-06430
  • 财政年份:
    2017
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Multiphysics Modeling and Analysis of Thermo-Visco-Acoustic Equations with Applications to the Design of Trace Gas Sensors
合作研究:热粘声方程的多物理场建模和分析及其在痕量气体传感器设计中的应用
  • 批准号:
    1620293
  • 财政年份:
    2016
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1733909
  • 财政年份:
    2016
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了