Current problems in nonlinear dynamics: Macroscopic modeling of microscopic interactions and instability of coherent structures

非线性动力学的当前问题:微观相互作用的宏观建模和相干结构的不稳定性

基本信息

  • 批准号:
    0405551
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-15 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Abstract: DMS-0405551 J Lega, University of ArizonaCurrent problems in nonlinear dynamics: Macroscopic modeling of microscopic interactions and instability of coherent structuresA current challenge in the modeling of many complex systems is todevelop comprehensive descriptions that cover all levels ofinteractions, from the microscopic to the macroscopic. The firsttopic of the proposed research falls into this category, with theadditional complexity of dealing with a system made of livingorganisms. The PI and a collaborator have recently developed ahydrodynamic model describing the dynamics and growth of bacterialcolonies at a macroscopic level. The PI will now investigate themicroscopic dynamics of interacting bacteria. Numericalsimulations of "live" interacting particles will be developed, onwhich coarse-graining will be applied to obtain a description atthe macroscopic level. The search will be for a set of collisionrules that can reproduce and explain the collective behaviors thathave recently been observed in dense colonies of bacteria. Thisstudy will also lay the ground for the future development ofkinetic models of collections of living organisms. The secondtopic of the proposed research concerns the stability of coherentstructures. The kink-anti-kink profile of a bacterial colony, thelocal deformations of an elastic filament, or the ultra-shortpulses propagating in an optical fiber, are all examples ofcoherent structures. Such objects are often described as specialsolutions of one or more model partial differential equations, andmodern analytical techniques have been developed to address thequestion of their stability. The PI will combine such techniqueswith numerical calculations and asymptotic expansions, in order toobtain stability and instability results for coherent structuresobserved in nonlinear optics and in reaction-diffusion equationswith nonlinear diffusion. The tools and methods that will bedeveloped in such a study are general enough to be applied toother evolutionary partial differential equations.Mathematical modeling is nowadays playing an important and growingrole in the life and physical sciences. In particular, models thatare based on our vision of how various building blocks of acomplex system interact with one another, and which translate thisvision into mathematical terms, can be used to test our theoriesand make sure our understanding is built on solid ground. The mainchallenge we face with such an approach is that our intuitionoften feels more at ease at the microscopic - or the buildingblock - level, even though we live in a macroscopic world. All ofthe difficulty lies in bridging the gap between these two worlds.The first part of this work deals with such a problem: the goal isto understand how microscopic interactions between bacteria maylead to collective, macroscopic behaviors, as observed in someexperiments. Such phenomena will be modeled in the case oflaboratory grown colonies of bacteria, but similar principlescould be applied to the formation and dynamics of biofilms, whichhave many engineering and medical applications. The second part ofthe work concerns general methods for the analysis of mathematicalmodels which involve nonlinear partial differential equations. Inparticular, the stability of solutions of some models relevant tononlinear optics and population dynamics will be investigated.
摘要:DMS-0405551 J Lega,亚利桑那大学非线性动力学中的当前问题:微观相互作用的宏观建模和相干结构的不稳定性许多复杂系统建模中当前的挑战是开发涵盖所有级别相互作用的全面描述,从微观到宏观。拟议研究的第一个主题福尔斯就属于这一范畴,但要处理由活生物体组成的系统,这又增加了一个复杂性。PI和一个合作者最近开发了一个流体动力学模型,在宏观水平上描述了细菌菌落的动力学和生长。PI现在将研究相互作用的细菌的微观动力学。将开发“活的”相互作用粒子的数值模拟,在其上将应用粗粒化以获得宏观水平的描述。这项研究将寻找一组碰撞规则,这些规则可以重现并解释最近在密集的细菌群落中观察到的集体行为。这项研究也将奠定了基础,为未来的发展ofkinetic模型的收集活生物体。建议研究的第二个主题涉及相干结构的稳定性。细菌菌落的扭结-反扭结轮廓、弹性细丝的局部变形或在光纤中传播的超短脉冲都是相干结构的例子。这些对象通常被描述为一个或多个模型偏微分方程的特解,现代分析技术已经发展到解决其稳定性问题。PI将联合收割机与数值计算和渐近展开相结合,以获得在非线性光学和具有非线性扩散的反应扩散方程中观察到的相干结构的稳定性和不稳定性结果。数学建模在生命科学和物理科学中发挥着越来越重要的作用。特别是,基于我们对复杂系统的各种构建块如何相互作用的愿景的模型,以及将这种愿景转化为数学术语的模型,可以用来测试我们的理论,并确保我们的理解建立在坚实的基础上。这种方法面临的主要挑战是,我们的直觉通常在微观或积木层面上感觉更轻松,即使我们生活在宏观世界中。所有的困难在于弥合这两个世界之间的差距。这项工作的第一部分处理这样一个问题:目标是了解细菌之间的微观相互作用如何导致集体的,宏观的行为,正如在一些实验中观察到的那样。这种现象将在实验室生长的细菌菌落的情况下进行建模,但类似的原理可以应用于生物膜的形成和动力学,这具有许多工程和医学应用。第二部分的工作涉及的一般方法的分析prosticalmodels,其中涉及非线性偏微分方程。特别地,将研究与非线性光学和种群动力学有关的一些模型的解的稳定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joceline Lega其他文献

Joceline Lega的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joceline Lega', 18)}}的其他基金

"NEW: GK-12" Graduate Students and Teacher Engaging in Mathematical Sciences (G-Teams)
“新:GK-12”从事数学科学的研究生和教师(G-Teams)
  • 批准号:
    0841234
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Junior US- Based Mathematicians at 03/04 Special Yr At Fields Institute
菲尔兹研究所 03/04 特别年的美国初级数学家
  • 批准号:
    0308970
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Hydrodynamics of Bacterial Colonies
美法合作研究:细菌菌落的流体动力学
  • 批准号:
    9909866
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis and Modeling of Pattern Formation in Biological and Physical Systems
生物和物理系统中模式形成的分析和建模
  • 批准号:
    0075827
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
  • 批准号:
    23KJ0293
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
  • 批准号:
    23K03149
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis and applications of nonlinear problems with lack of compactness
缺乏紧性的非线性问题的分析与应用
  • 批准号:
    RGPIN-2022-04213
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
  • 批准号:
    22K03387
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
  • 批准号:
    22K20331
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Nonlinear inverse problems in holography and particle kinematics
全息术和粒子运动学中的非线性反问题
  • 批准号:
    RGPIN-2022-03290
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了