A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity

流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法

基本信息

  • 批准号:
    0405803
  • 负责人:
  • 金额:
    $ 11.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

Project Abstract: 0405803 A Mazzucato, Pennsylvania State UniversityA Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity The investigator A. L. Mazzucato will address several questions in themathematical investigation of fluid flows and elasticity using methodsfrom Fourier and micro-local analysis. Micro-local analysis seeks toidentify points and directions along which a solution to partialdifferential equations looses regularity, by localizing it in both space and frequency. Modern techniques in Fourier analysis consist indecomposing a signal by testing it against a given set of waves orwave-forms at different length scales, so that relevant information can be extracted accurately and efficiently. Turbulent flows, for example, exhibits a complex behavior at both large and small scales. The coupling between different scales is often due to the non-linearity of the underlying equations. The investigator will concentrate on the following problems. She will study dissipation of enstrophy, the squared vorticity, for the two-dimensional Euler equations, which model inviscid fluid flow, by considering transport by irregular vector fields. Understanding howenstrophy is dissipated is important for two-dimensional turbulence. She will analyze certain weak solutions to the Navier-Stokesequations, which describe the motion of viscous fluids, with globallyinfinite energy by using generalized energy inequalities. Allowing for weaker control at infinity could in turn lead to refined estimates on the local behavior of solutions. She will investigate existence of mild solutions to the Navier-Stokes equations by semi-group methods in polyhedral domains, which are domains of particular interest in numerical simulations. Finally, the investigator will continue studying the inverse problem of unique identification of elastic properties by dynamicsurface measurements, exploiting the covariance of the elasticityequations under coordinate changes. The determination of elasticparameters has significant applications in medical imaging.The present project stresses the inter-disciplinary nature of the analysis of partial differential equations, which mathematically model physical phenomena. Theoretical tools developed to discern subtle properties of these equations have been successfully employed in real-life problems. Micro-local analysis studies how singularities are propagated by differential equations. Changes in material properties cause singularities to form in waves and can hence be determined when direct measurement is not possible, as in seismology, oil exploration, and medical diagnostics. Fourier analysis examines the content of a signal at a given frequency or length scale. Understanding crucial aspects of turbulent flows, forexample concentration and dissipation of energy and vorticity, atdifferent scales has an impact in disciplines ranging from aerodynamics, to meteorology, to human physiology. The need for numerical simulation and design has underlined the role of complex geometries, where a refined mathematical analysis is often necessary for a qualitative understanding. With this project the investigator also aims at strengthening hercollaborative effort with other female researchers both in the UnitedStates and abroad.
项目摘要:A. Mazzucato,宾夕法尼亚州立大学流体力学和弹性中的一些非线性问题的微局部和傅立叶解析方法研究员A. L. Mazzucato将使用傅立叶和微局部分析方法解决流体流动和弹性数学研究中的几个问题。微局部分析试图通过在空间和频率上对偏微分方程的解进行局部化,从而确定其解失去规律性的点和方向。傅里叶分析的现代技术是通过对给定的一组不同长度尺度的波或波形进行测试来分解信号,以便准确有效地提取相关信息。例如,湍流在大尺度和小尺度上都表现出复杂的行为。不同尺度之间的耦合往往是由于底层方程的非线性。调查员将集中研究以下问题。她将通过考虑不规则矢量场的输运来研究二维欧拉方程的熵耗散,即涡度的平方。了解涡旋是如何耗散的对于二维湍流是很重要的。她将用广义能量不等式分析具有全局无限能量的navier - stokes方程组的弱解,该方程组描述粘性流体的运动。允许在无穷远处较弱的控制反过来可以导致对解的局部行为的精确估计。她将用半群方法研究多面体域中Navier-Stokes方程温和解的存在性,多面体域是数值模拟中特别感兴趣的域。最后,利用坐标变化下弹性方程的协方差,继续研究动力面测量弹性特性唯一识别的反问题。弹性参数的确定在医学成像中有重要的应用。本项目强调偏微分方程分析的跨学科性质,偏微分方程是物理现象的数学模型。为识别这些方程的微妙性质而开发的理论工具已成功地应用于实际问题。微局部分析研究奇异点如何在微分方程中传播。材料性质的变化会导致奇点在波中形成,因此在无法直接测量时可以确定奇点,例如在地震学、石油勘探和医学诊断中。傅里叶分析在给定的频率或长度范围内检查信号的内容。了解湍流的关键方面,例如能量和涡度的集中和耗散,在不同的尺度上对从空气动力学、气象学到人体生理学等学科都有影响。对数值模拟和设计的需求强调了复杂几何的作用,其中精细的数学分析通常是定性理解所必需的。通过这个项目,研究者还旨在加强她与美国和国外其他女性研究人员的合作努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Mazzucato其他文献

Anna Mazzucato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Mazzucato', 18)}}的其他基金

Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
  • 批准号:
    2206453
  • 财政年份:
    2022
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
  • 批准号:
    1909103
  • 财政年份:
    2019
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
  • 批准号:
    1615457
  • 财政年份:
    2016
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
  • 批准号:
    1312727
  • 财政年份:
    2013
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
  • 批准号:
    1009713
  • 财政年份:
    2010
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1009714
  • 财政年份:
    2010
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
  • 批准号:
    0708902
  • 财政年份:
    2007
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant

相似国自然基金

具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
  • 批准号:
    81601936
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
  • 批准号:
    AH/Z50550X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Research Grant
Drivers of Local Prosperity Differences: People, Firms and Places
地方繁荣差异的驱动因素:人、企业和地方
  • 批准号:
    ES/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Research Grant
I-Corps: Translation Potential of Rapid In-situ Forming Gel for Local Gene Delivery
I-Corps:快速原位形成凝胶用于局部基因传递的转化潜力
  • 批准号:
    2410778
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Spatial and Geological Mapping in Local Communities
博士论文研究:当地社区的空间和地质测绘
  • 批准号:
    2342887
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Standard Grant
Partnering with local knowledge systems to impact river management
与当地知识系统合作影响河流管理
  • 批准号:
    DE240101058
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Discovery Early Career Researcher Award
Stirling Local Policy Innovation Partnership
斯特灵地方政策创新伙伴关系
  • 批准号:
    ES/Y502364/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Research Grant
Tackling planning delays and housing under-supply across England: Can inter-municipal cooperation between local planning authorities help?
解决英格兰各地的规划延误和住房供应不足问题:地方规划当局之间的跨市合作能提供帮助吗?
  • 批准号:
    ES/Z502510/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Research Grant
VIETPULSE - Vietnam Intelligent Energy Trading Platform for Upscaling Local energy Storage and EV
VIETPULSE - 越南智能能源交易平台,用于升级本地储能和电动汽车
  • 批准号:
    10078878
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Collaborative R&D
Local Food System実践を通じたアニマルウェルフェア普及メカニズムの探究
通过本土食品体系实践探索动物福利传播机制
  • 批准号:
    24K17976
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
PFI-TT: Local Sensing on Automated Vehicles
PFI-TT:自动驾驶车辆的本地传感
  • 批准号:
    2329820
  • 财政年份:
    2024
  • 资助金额:
    $ 11.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了