Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
基本信息
- 批准号:1615457
- 负责人:
- 金额:$ 28.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator studies several problems in fluid mechanics and mechanics of elastic materials that are characterized by a singular or nearly singular behavior. In the first part of the project, the investigator focuses on understanding and modeling the behavior of complex fluid flows under the requirement of incompressibility, that is, preserving the volume occupied by the fluid. Many fluids are approximately incompressible, including water and under some conditions even air. The complex behavior that is investigated is due to friction between the fluid and rigid walls, and to stirring of the fluid itself. Both are major phenomena in fluid mechanics and are still not fully understood rigorously. Wall friction creates drag and produces swirls in the flow that contribute to the onset of turbulence. Quantifying the effect of stirring and mixing in fluid flows has direct impact on many physical processes, from extrusion and molding, to efficient combustion, to pollutant dispersal. In the second part of the project, the investigator studies the propagation of time-periodic waves in elastic materials. Waves can be used to remotely probe materials by recording their elastic response under an applied disturbance. This is a so-called inverse problem, as material properties are inferred from measurements, and it is highly sensitive to errors. Mathematical algorithms are used to improve the reliability of the reconstruction. The type of inverse problem that is studied finds applications in geological exploration, earthquake prediction, and ground-penetrating radar. The project provides training opportunities for both graduate and undergraduate students.The investigator uses analytical and computational techniques to study problems in incompressible fluid mechanics and in mechanics of deformable solids. The project has two main parts: I. Incompressible Fluid Mechanics: I.a. Vanishing viscosity limit and boundary layer analysis; I.b. Optimal mixing and irregular transport. II. Elasticity: Inverse boundary problem for time-harmonic waves in elastic media. These problems are characterized by the presence of singularities, in the form of singular problems for partial differential equations (PDE), such as the zero-viscosity limit for the Navier-Stokes equations, or in the form of singular coefficients in the PDE, such as in mixing problems under non-Lipschitz flows, or singular domains for the PDE, such as domains with corners. The project addresses some fundamental open questions in fluid mechanics concerning the behavior of incompressible fluids at high Reynolds numbers. It seeks to shed light on the mechanism for boundary layer separation and the validity of Prandtl approximation through the rigorous analysis of special flows. It also seeks to quantify mixing properties of flows under the strong divergence-free constraint from the point of view of transport equations and geometric analysis. In the second part, the project addresses the stability and performance of reconstruction algorithms in inverse boundary problems, which have had a major impact on non-invasive imaging techniques. The appearance of singularities and the interplay between analysis and geometry are recurring themes of the project. A variety of techniques, in many cases combined in a novel way, such as in mixing problems, are used to carry out the work. The project provides training opportunities for both graduate and undergraduate students.
研究人员研究了流体力学和弹性材料力学中的几个问题,这些问题的特点是行为奇异或近乎奇异。在项目的第一部分,研究人员专注于理解和模拟不可压缩要求下复杂流体流动的行为,即保持流体所占据的体积。许多流体是近乎不可压缩的,包括水,在某些情况下甚至是空气。所研究的复杂行为是由于流体与刚性壁之间的摩擦以及流体本身的搅拌。这两种现象都是流体力学中的主要现象,目前对它们的理解还不够严格。壁面摩擦会产生阻力,并在流动中产生漩涡,从而导致湍流的开始。量化流体流动中搅拌和混合的效果对许多物理过程都有直接影响,从挤出和成型,到高效燃烧,再到污染物的扩散。在项目的第二部分,研究人员研究了时间周期波在弹性材料中的传播。波可以通过记录材料在外加扰动下的弹性响应来远程探测材料。这就是所谓的逆问题,因为材料的性质是通过测量推断出来的,而且它对误差高度敏感。为了提高重建的可靠性,采用了数学算法。所研究的这类反问题在地质勘探、地震预报和探地雷达中都有应用。该项目为研究生和本科生提供培训机会。研究人员使用分析和计算技术来研究不可压缩流体力学和可变形固体力学中的问题。该项目包括两个主要部分:I.不可压缩流体力学:I.A.消失粘度极限和边界层分析;最佳混合和不规则输送。弹性:弹性介质中时间谐波的反边界问题。这些问题的特征是奇点的存在,表现为偏微分方程组的奇异问题的形式,如Navier-Stokes方程的零粘性极限,或奇异系数的形式,如非Lipschitz流下的混合问题,或偏微分方程组的奇异域,如带角域。该项目解决了流体力学中的一些基本问题,涉及高雷诺数下不可压缩流体的行为。它试图通过对特殊流动的严格分析来阐明边界层分离的机制和普朗特近似的有效性。并从输运方程和几何分析的角度对强无散度约束下流动的混合特性进行了定量化。在第二部分中,该项目解决了反边界问题中重建算法的稳定性和性能,这些算法对非侵入性成像技术产生了重大影响。奇点的出现以及分析和几何之间的相互作用是该项目反复出现的主题。在许多情况下,以一种新颖的方式结合在一起,例如在混合问题中,使用了各种技术来开展这项工作。该项目为研究生和本科生提供了培训机会。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of a Model of Elastic Dislocations in Geophysics
- DOI:10.1007/s00205-019-01462-w
- 发表时间:2018-09
- 期刊:
- 影响因子:2.5
- 作者:A. Aspri;E. Beretta;A. Mazzucato;Maarten V. de Hoop
- 通讯作者:A. Aspri;E. Beretta;A. Mazzucato;Maarten V. de Hoop
Dislocations in a layered elastic medium with applications to fault detection
- DOI:10.4171/jems/1243
- 发表时间:2020-04
- 期刊:
- 影响因子:2.6
- 作者:A. Aspri;E. Beretta;A. Mazzucato
- 通讯作者:A. Aspri;E. Beretta;A. Mazzucato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Mazzucato其他文献
Anna Mazzucato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Mazzucato', 18)}}的其他基金
Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
- 批准号:
2206453 - 财政年份:2022
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
- 批准号:
1909103 - 财政年份:2019
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
- 批准号:
1312727 - 财政年份:2013
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
- 批准号:
1009713 - 财政年份:2010
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
- 批准号:
1009714 - 财政年份:2010
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
- 批准号:
0708902 - 财政年份:2007
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
- 批准号:
0405803 - 财政年份:2004
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
相似海外基金
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
- 批准号:
20K03667 - 财政年份:2020
- 资助金额:
$ 28.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer methods for classical problems in continuum theory
连续统理论经典问题的计算机方法
- 批准号:
539176-2019 - 财政年份:2019
- 资助金额:
$ 28.52万 - 项目类别:
University Undergraduate Student Research Awards
Scaling Laws and Optimal Design in Some Problems of Continuum Mechanics
连续介质力学若干问题的标度律与优化设计
- 批准号:
2025000 - 财政年份:2019
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Computer assisted investigations on classical problems in continuum theory
连续统理论经典问题的计算机辅助研究
- 批准号:
539182-2019 - 财政年份:2019
- 资助金额:
$ 28.52万 - 项目类别:
University Undergraduate Student Research Awards
Scaling Laws and Optimal Design in Some Problems of Continuum Mechanics
连续介质力学若干问题的标度律与优化设计
- 批准号:
1812831 - 财政年份:2018
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1656030 - 财政年份:2016
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Using Mixed Discrete-Continuum Representations to Characterize the Dynamics of Large Many-Body Dynamics Problems
使用混合离散连续体表示来表征大型多体动力学问题的动力学
- 批准号:
1635004 - 财政年份:2016
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1500829 - 财政年份:2015
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
- 批准号:
1400555 - 财政年份:2014
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Inverse Problems: Discrete Meets Continuum
反问题:离散遇见连续体
- 批准号:
1411577 - 财政年份:2014
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant