Singular Problems in Continuum Mechanics

连续介质力学中的奇异问题

基本信息

  • 批准号:
    1615457
  • 负责人:
  • 金额:
    $ 28.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The investigator studies several problems in fluid mechanics and mechanics of elastic materials that are characterized by a singular or nearly singular behavior. In the first part of the project, the investigator focuses on understanding and modeling the behavior of complex fluid flows under the requirement of incompressibility, that is, preserving the volume occupied by the fluid. Many fluids are approximately incompressible, including water and under some conditions even air. The complex behavior that is investigated is due to friction between the fluid and rigid walls, and to stirring of the fluid itself. Both are major phenomena in fluid mechanics and are still not fully understood rigorously. Wall friction creates drag and produces swirls in the flow that contribute to the onset of turbulence. Quantifying the effect of stirring and mixing in fluid flows has direct impact on many physical processes, from extrusion and molding, to efficient combustion, to pollutant dispersal. In the second part of the project, the investigator studies the propagation of time-periodic waves in elastic materials. Waves can be used to remotely probe materials by recording their elastic response under an applied disturbance. This is a so-called inverse problem, as material properties are inferred from measurements, and it is highly sensitive to errors. Mathematical algorithms are used to improve the reliability of the reconstruction. The type of inverse problem that is studied finds applications in geological exploration, earthquake prediction, and ground-penetrating radar. The project provides training opportunities for both graduate and undergraduate students.The investigator uses analytical and computational techniques to study problems in incompressible fluid mechanics and in mechanics of deformable solids. The project has two main parts: I. Incompressible Fluid Mechanics: I.a. Vanishing viscosity limit and boundary layer analysis; I.b. Optimal mixing and irregular transport. II. Elasticity: Inverse boundary problem for time-harmonic waves in elastic media. These problems are characterized by the presence of singularities, in the form of singular problems for partial differential equations (PDE), such as the zero-viscosity limit for the Navier-Stokes equations, or in the form of singular coefficients in the PDE, such as in mixing problems under non-Lipschitz flows, or singular domains for the PDE, such as domains with corners. The project addresses some fundamental open questions in fluid mechanics concerning the behavior of incompressible fluids at high Reynolds numbers. It seeks to shed light on the mechanism for boundary layer separation and the validity of Prandtl approximation through the rigorous analysis of special flows. It also seeks to quantify mixing properties of flows under the strong divergence-free constraint from the point of view of transport equations and geometric analysis. In the second part, the project addresses the stability and performance of reconstruction algorithms in inverse boundary problems, which have had a major impact on non-invasive imaging techniques. The appearance of singularities and the interplay between analysis and geometry are recurring themes of the project. A variety of techniques, in many cases combined in a novel way, such as in mixing problems, are used to carry out the work. The project provides training opportunities for both graduate and undergraduate students.
研究者研究了弹性材料的流体力学和力学问题,这些问题的特征是单数或几乎奇异的行为。 在项目的第一部分中,研究人员专注于理解和建模在不可压缩性的要求下,即保留流体占据的体积的行为。 许多液体大致不可压缩,包括水,甚至在某些条件下甚至空气。 所研究的复杂行为是由于流体和刚性壁之间的摩擦以及流体本身搅动。 两者都是流体力学中的主要现象,并且仍然不完全理解。 壁摩擦会在流动中产生阻力并产生漩涡,从而导致湍流发作。 量化流体流中搅拌和混合的效果对从挤出和成型到有效燃烧到污染物分散的许多物理过程有直接影响。 在项目的第二部分中,研究人员研究了弹性材料中时间周期波的传播。 波可以通过记录其在应用的干扰下记录其弹性响应来远程探测材料。 这是一个所谓的反问题,因为从测量值中推断出材料特性,并且对错误高度敏感。 数学算法用于提高重建的可靠性。 研究的反问题类型在地质探索,地震预测和地面渗透雷达中发现了应用。 该项目为研究生和本科生提供了培训机会。 该项目有两个主要部分:I。不可压缩的流体力学:I.A。消失的粘度极限和边界层分析; I.B.最佳混合和不规则运输。 ii。弹性:弹性介质中时间谐波波的逆边界问题。 这些问题的特征是存在奇异性的特征,以部分微分方程(PDE)的奇异问题形式,例如Navier-Stokes方程的零粘度限制,或以PDE中的奇异系数的形式,例如在非lipschitz Flow下混合问题的奇异系数,或与PDE的非lipschitular domains Corners等界面,例如cornerers cornerers corners,例如cornerers。 该项目解决了有关高雷诺数字上不可压缩流体的行为的流体机制中的一些基本开放问题。 它试图通过对特殊流的严格分析来阐明边界层分离的机制和prandtl近似的有效性。 它还试图从运输方程的角度和几何分析的角度量化强大差异约束下的流量的混合特性。 在第二部分中,该项目解决了反向边界问题中重建算法的稳定性和性能,这对非侵入性成像技术产生了重大影响。 奇点的出现以及分析与几何形状之间的相互作用是该项目的重复主题。 在许多情况下,以一种新颖的方式(例如在混合问题中)进行了多种技术,用于执行工作。 该项目为研究生和本科生提供了培训机会。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of a Model of Elastic Dislocations in Geophysics
  • DOI:
    10.1007/s00205-019-01462-w
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    A. Aspri;E. Beretta;A. Mazzucato;Maarten V. de Hoop
  • 通讯作者:
    A. Aspri;E. Beretta;A. Mazzucato;Maarten V. de Hoop
Dislocations in a layered elastic medium with applications to fault detection
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Mazzucato其他文献

Anna Mazzucato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Mazzucato', 18)}}的其他基金

Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
  • 批准号:
    2206453
  • 财政年份:
    2022
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Standard Grant
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
  • 批准号:
    1909103
  • 财政年份:
    2019
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
  • 批准号:
    1312727
  • 财政年份:
    2013
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
  • 批准号:
    1009713
  • 财政年份:
    2010
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1009714
  • 财政年份:
    2010
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Standard Grant
Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
  • 批准号:
    0708902
  • 财政年份:
    2007
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
  • 批准号:
    0405803
  • 财政年份:
    2004
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于连续张量表示的高维数据复原问题研究
  • 批准号:
    12371456
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
部分可观测连续时间马氏决策过程若干风险准则的最优控制问题研究
  • 批准号:
    12361091
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
智能驾驶系统连续学习算法知识迁移和灾难性遗忘问题研究
  • 批准号:
    52302487
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
连续优化问题的量子算法与复杂性研究
  • 批准号:
    62372006
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
拟连续domain范畴的若干问题研究
  • 批准号:
    12301583
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
  • 批准号:
    20K03667
  • 财政年份:
    2020
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer methods for classical problems in continuum theory
连续统理论经典问题的计算机方法
  • 批准号:
    539176-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 28.52万
  • 项目类别:
    University Undergraduate Student Research Awards
Computer assisted investigations on classical problems in continuum theory
连续统理论经典问题的计算机辅助研究
  • 批准号:
    539182-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 28.52万
  • 项目类别:
    University Undergraduate Student Research Awards
Scaling Laws and Optimal Design in Some Problems of Continuum Mechanics
连续介质力学若干问题的标度律与优化设计
  • 批准号:
    2025000
  • 财政年份:
    2019
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Continuing Grant
Scaling Laws and Optimal Design in Some Problems of Continuum Mechanics
连续介质力学若干问题的标度律与优化设计
  • 批准号:
    1812831
  • 财政年份:
    2018
  • 资助金额:
    $ 28.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了