Partial Differential Equations for Incompressible Fluids and Elastic Solids

不可压缩流体和弹性固体的偏微分方程

基本信息

  • 批准号:
    2206453
  • 负责人:
  • 金额:
    $ 37.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The focus of this project is to study the behavior of fluids and elastic materials that are modeled mathematically by so-called partial differential equations. The aim is to further our understanding of certain phenomena by utilizing rigorous and quantitative mathematical results. Numerical simulations will also be used in parts of the project. The phenomena that will be studied are motivated by applications to real-life problems with potential societal impacts and are characterized by the presence of singularities and the coupling between different length and time scales. In the first part of the project, the exchange between walls and incompressible fluids will be considered by studying the effect of injection and suction on fluid flow and the effect of the motion of multiple bodies immersed in the fluid and their possible collisions, as in debris flow and sedimentation. In the second part of the project, the object of investigation will be how an incompressible flow transports and deforms directional objects, as in magnetic and conducting fluids, and the interplay between mixing and diffusion, as in biological processes. The last part of the project concerns modeling of faults buried deep in the Earth's crust and their monitoring using data from Global Positioning Systems (GPS) and satellites, with the ultimate goal of predicting the onset of seismic events. The project provides also training opportunities for graduate and undergraduate students, particularly members of under-represented groups.The focus of this project is the study of various problems modeled by partial differential equations concerning the behavior of incompressible fluids and elastic solids, using analytic and geometric techniques. The problems under investigation are motivated by fundamental physical phenomena and bring about challenging mathematical questions, such as fluid-structure interaction problems in the presence of collisions, and non-local and non-linear interface conditions for elastic dislocations. The project is divided into three main parts. The first part concerns the behavior of inviscid and slightly viscous fluids with boundary injection and suction, which can be used to control turbulent flows in pipes and channels and stabilize the viscous boundary layer. The motion of rigid bodies in a viscous fluid when slippage is allowed will also be studied, with applications to debris flow and sedimentation. The second part concerns measures of mixing and stretching for transport of vectors by a flow, such as in magneto-hydrodynamics, and enhanced dissipation for degenerate operators, with applications in electro- and thermo-rheological fluids and mathematical biology. The third part concerns seismic faults and fault monitoring using GPS and satellite data. Progress on these problems is likely to have impact in other fields, such as geophysics and engineering. The presence of multi-scale effects and singularities gives cohesiveness to the project. While its focus lies on analytic results and techniques, several of the proposed problems, such as optimal mixing and modeling of faults, have a natural computational counterpart that will be addressed together with collaborators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的重点是研究流体和弹性材料的行为,这些流体和弹性材料是用所谓的偏微分方程组进行数学建模的。其目的是通过利用严谨和定量的数学结果来加深我们对某些现象的理解。数值模拟也将在该项目的部分地区使用。将被研究的现象被应用于具有潜在社会影响的现实生活问题所激励,其特征是奇点的存在以及不同长度和时间尺度之间的耦合。在项目的第一部分,将通过研究注入和吸力对流体流动的影响,以及浸入流体中的多个物体的运动和它们可能发生的碰撞,如在泥石流和沉积中,来考虑壁面和不可压缩流体之间的交换。在该项目的第二部分,研究对象将是不可压缩流动如何传输和变形定向物体,如在磁性和导电流体中,以及混合和扩散之间的相互作用,如在生物过程中。该项目的最后部分涉及利用全球定位系统(GPS)和卫星的数据对深埋在地壳中的断层进行建模和监测,最终目标是预测地震事件的发生。该项目还为研究生和本科生提供了培训机会,特别是代表不足群体的成员。本项目的重点是利用解析和几何技术研究由偏微分方程组模拟的关于不可压缩流体和弹性固体行为的各种问题。所研究的问题是由基本的物理现象引起的,并带来了具有挑战性的数学问题,如存在碰撞的流固耦合问题,以及弹性位错的非局部和非线性界面条件。该项目分为三个主要部分。第一部分是关于具有边界注入和边界吸力的无粘和微粘流体的行为,它可以用来控制管道和通道中的湍流流动,并稳定粘性边界层。还将研究允许滑动时刚体在粘性流体中的运动,并将其应用于泥石流和泥沙沉积。第二部分涉及通过流动传输矢量的混合和拉伸措施,例如在磁流体动力学中,以及简并算子的增强耗散,以及在电流变液和热流变流体和数学生物学中的应用。第三部分涉及地震断层和利用GPS和卫星数据进行断层监测。在这些问题上的进展可能会对地球物理和工程等其他领域产生影响。多尺度效果和奇点的存在使项目具有凝聚力。虽然它的重点是分析结果和技术,但提出的几个问题,如故障的最佳混合和建模,有一个自然的计算对应项,将与合作者一起解决。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced dissipation by circularly symmetric and parallel pipe flows
  • DOI:
    10.1016/j.physd.2022.133640
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YUANYUAN FENG-;A. Mazzucato;Camilla Nobili
  • 通讯作者:
    YUANYUAN FENG-;A. Mazzucato;Camilla Nobili
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Mazzucato其他文献

Anna Mazzucato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Mazzucato', 18)}}的其他基金

Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
  • 批准号:
    1909103
  • 财政年份:
    2019
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
  • 批准号:
    1615457
  • 财政年份:
    2016
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
  • 批准号:
    1312727
  • 财政年份:
    2013
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
  • 批准号:
    1009713
  • 财政年份:
    2010
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
  • 批准号:
    1009714
  • 财政年份:
    2010
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
  • 批准号:
    0708902
  • 财政年份:
    2007
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
  • 批准号:
    0405803
  • 财政年份:
    2004
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 37.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了