Aspects of Fluid Mechanics and Elasticity from the Point of View of Microlocal and Fourier Analysis
从微局部和傅里叶分析的角度看流体力学和弹性
基本信息
- 批准号:0708902
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical aspects of fluid mechanics and elasticity will be investigated using Fourier and microlocal analysis techniques. Despite recent developments, fundamental questions remain open in understanding fluid flow and elastic behavior in solids, in particular with respect to turbulence, elastic wave propagation, and singularity formation. A main goal is to obtain qualitative, but physically relevant, information from properties of solutions to the underlying differential equations. The complex phenomena observed in physical systems correspond to ill-posedness of the equations, in the form of instability, irregularity, and non-uniqueness of the corresponding solutions. Microlocal and Fourier analysis have proven effective tools for this investigation, as they encode the smoothness, size, and oscillations in a signal accurately and efficiently. Microlocal analysis provides crucial directional information in the presence of complex geometries, such as corners and cracks. Three main problems will be addressed. The first is dissipation of enstrophy, the mean square of vorticity, for incompressible 2D and quasi-geostrophic flows, and local decay of the energy spectrum for incompressible 3D flows using the Wigner transform. The second isanisotropic static elasticity on curved polyhedral domains with cracks. The third is identification of density and anisotropic elastic constants in the interior of a body from dynamic surface displacement-traction measurements. The proposed research consists of problems where the exchange between mathematics and other sciences has been fruitful. Fluid turbulence is a fundamental occurrence, which still lacks a complete understanding. It affects the way fluids transport and mix other substances with implications in global climate models, fish migration, and industrial design, for example. The mechanism by which vortices form and transfer energy at different length scales is central to turbulence and is one of the problems under study. Modeling of slow crack formation is important for structural stability in engineering. Mathematical analysis proposed in the second problem under study validates the results of computer simulations, which can be used to predict failure in elastic materials under mechanical stress. Identification of elastic response in materials from remote measurements gives rise to non-invasive, diagnostic imaging of the human body, and imaging of the earth's crust in seismology and oil exploration. The investigation proposed in the third problem aims at determining a priori when sufficient information in the data exists for image reconstruction.The overall goal of the proposal is to exploit mathematical results to advance understanding of physical phenomena with impact on real-life applications.
流体力学和弹性的数学方面将使用傅立叶和微局部分析技术研究。尽管最近发生了发展,但在理解固体中的流体流和弹性行为方面,尤其是关于湍流,弹性波传播和奇异性形成,基本问题仍然开放。一个主要目标是获取从解决方案的属性到基础微分方程的定性但与物理相关的信息。在物理系统中观察到的复杂现象对应于方程不稳定性,以不稳定性,不规则性和相应溶液的不唯一性的形式。 微局部和傅立叶分析已被证明是该研究的有效工具,因为它们可以准确有效地编码信号中的平滑度,大小和振荡。 微局部分析在存在复杂几何形状(例如角落和裂纹)的情况下提供了至关重要的方向信息。将解决三个主要问题。 第一个是腐蚀,涡流的均匀平方,用于不可压缩的2D和准地藻流,以及使用Wigner变换的不可压缩3D流的能量光谱的局部衰变。 带有裂缝的弯曲多面体结构域上的第二种质子静态弹性。 第三是通过动态表面位移量测量值鉴定人体内部中的密度和各向异性弹性常数。拟议的研究包括数学与其他科学之间的交流的问题。 流体湍流是一种基本事件,仍然缺乏完全理解。 例如,它影响流体运输和混合其他物质的方式,例如在全球气候模型,鱼类迁移和工业设计中的影响。在不同长度尺度上形成和转移能量的机制对于湍流至关重要,是研究的问题之一。 慢速裂纹形成的建模对于工程的结构稳定性很重要。 在第二个问题中提出的数学分析验证了计算机模拟的结果,该结果可用于预测机械应力下的弹性材料的故障。 远程测量中材料中弹性反应的识别会导致人体的无创,诊断成像以及对地震学和石油探索中地壳的成像。第三个问题中提出的调查旨在确定数据中有足够的信息进行图像重建时的先验性。该提案的总体目标是利用数学结果,以提高对物理现象的理解,并对现实应用产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Mazzucato其他文献
Anna Mazzucato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Mazzucato', 18)}}的其他基金
Partial Differential Equations for Incompressible Fluids and Elastic Solids
不可压缩流体和弹性固体的偏微分方程
- 批准号:
2206453 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Complex and Singular Behavior in Continuum Mechanics Models
连续力学模型中的复杂和奇异行为
- 批准号:
1909103 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Singular Problems in Continuum Mechanics
连续介质力学中的奇异问题
- 批准号:
1615457 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Analysis and computation of partial differential equations in Mechanics and related fields
力学及相关领域偏微分方程的分析与计算
- 批准号:
1312727 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Applied Analysis of Partial Differential Equations and Related Inverse Problems in Mechanics
力学中偏微分方程及相关反问题的应用分析
- 批准号:
1009713 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
- 批准号:
1009714 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
- 批准号:
0405803 - 财政年份:2004
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
相似国自然基金
纳米塑料暴露于生物体液中的凝聚动力学机制研究
- 批准号:42377418
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
胶体液滴系统可视化研究印刷电子蒸发成膜的动力学演化与多尺度调控
- 批准号:12272390
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
柔性电子喷印制造中非牛顿流体液滴生成和冲击动力学研究
- 批准号:11932009
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:重点项目
胶体液滴蒸发中多物理效应协同下的颗粒输运动力学跨尺度研究
- 批准号:11902321
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Signal processing approach to mesh generations in simulations of fluid interfaces
流体界面模拟中网格生成的信号处理方法
- 批准号:
21K20325 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Theoretical analysis of multidimensional nonequilibrium gas flows and fluid dynamics equations near the boundaries
多维非平衡气体流动和边界附近流体动力学方程的理论分析
- 批准号:
19H02065 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic theory based on molecular dynamics of vapor-liquid system
基于汽液系统分子动力学的渐近理论
- 批准号:
18K18824 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Mathematical research on mechanical problems of incompressible fluid
不可压缩流体力学问题的数学研究
- 批准号:
18H01137 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathamatical analysis of various fluid flow phenomena
各种流体流动现象的数学分析
- 批准号:
17H04825 - 财政年份:2017
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Young Scientists (A)