Small deviation and geometric quantification

偏差小、几何量化

基本信息

  • 批准号:
    0405855
  • 负责人:
  • 金额:
    $ 8.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

0405855Gao The PI will study small deviation probabilities for Gaussian processes. In particular, he will look at three specific problems. First, he will study the relationship between small deviations under different norms. This can allow results obtained under one norm to be modified so that they are true under a different norm. Second, he will look at the small deviation probabilities for Gaussian processes with specific forms of the covariance kernel. Finally, he will study the small deviation asymptotic behavior of some Gaussian random fields including the Brownian sheet. The PI believes that some combination of the Karhunen-Loeve expansion, Fourier analysis and geometric methods will allow significant progress to be made on each of these problems. Stochastic processes move randomly through space and time. Simple descriptions of these processes tell where they should be located as a function of time (the mean process) and what their range should be. Probabilists have studied large deviations (events where the process is far away from where it should be) for many years. Now they are turning to small deviations (events where the range of the process is much smaller than it should be). This research focuses on small deviations for Gaussian processes (processes whose underlying structure is the normal distribution).
PI将研究高斯过程的小偏差概率。他将特别关注三个具体问题。首先,他将研究不同规范下的小偏差之间的关系。这可以允许在一个范数下获得的结果被修改,使得它们在不同的范数下为真。其次,他将研究具有特定形式的协方差核的高斯过程的小偏差概率。最后,他将研究包括布朗单在内的一些高斯随机场的小偏差渐近行为。PI认为,Karhunen-Loeve展开,傅立叶分析和几何方法的某种组合将使这些问题中的每一个都取得重大进展。随机过程在空间和时间中随机移动。这些过程的简单描述告诉他们应该位于作为时间的函数(平均过程)和他们的范围应该是什么。概率学家研究大偏差(过程远离它应该在的地方的事件)已有多年。现在他们转向小偏差(过程的范围比它应该的范围小得多的事件)。本研究的重点是高斯过程(其底层结构是正态分布的过程)的小偏差。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fuchang Gao其他文献

Convex Regression in Multidimensions: Suboptimality of Least Squares Estimators
多维凸回归:最小二乘估计量的次优性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gil Kur;Fuchang Gao;Adityanand Guntuboyina;B. Sen
  • 通讯作者:
    B. Sen
Comparison for upper tail probabilities of random series
随机序列上尾概率的比较
Upper tail probabilities of integrated Brownian motions
积分布朗运动的上尾概率
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fuchang Gao;Xiangfeng Yang
  • 通讯作者:
    Xiangfeng Yang
Entropy of Convex Functions on $$\mathbb {R}^d$$
  • DOI:
    10.1007/s00365-017-9387-1
  • 发表时间:
    2017-08-17
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Fuchang Gao;Jon A. Wellner
  • 通讯作者:
    Jon A. Wellner

Fuchang Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fuchang Gao', 18)}}的其他基金

Collaborative Research: Integrating Physics and Generative Machine Learning Models for Inverse Materials Design
合作研究:将物理与生成机器学习模型相结合进行逆向材料设计
  • 批准号:
    1940270
  • 财政年份:
    2019
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Continuing Grant

相似海外基金

Measurement of L2 pronunciation deviation and L2 listening disfluency and its application to prosody training for smooth international communication
二语发音偏差和二语听力不流利度测量及其在国际交流顺畅韵律训练中的应用
  • 批准号:
    23K17459
  • 财政年份:
    2023
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Large deviation estimates for occupation times of intermittent maps
间歇地图占用时间的大偏差估计
  • 批准号:
    23K19010
  • 财政年份:
    2023
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Quantifying a deviation between tsunami inundation and sedimentation by numerical experiments focusing on "slow tsunamis"
通过以“慢海啸”为中心的数值实验来量化海啸淹没和沉积之间的偏差
  • 批准号:
    23K13177
  • 财政年份:
    2023
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
  • 批准号:
    10435204
  • 财政年份:
    2022
  • 资助金额:
    $ 8.46万
  • 项目类别:
Investigation of the onset and progression mechanisms of primary open-angle glaucoma - Association between the genetic variants associated with primary open-angle glaucoma and visual field loss -
原发性开角型青光眼的发病和进展机制的研究 - 原发性开角型青光眼相关基因变异与视野缺损之间的关联 -
  • 批准号:
    22K09787
  • 财政年份:
    2022
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
  • 批准号:
    557776-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Measuring conscious monitoring and metacognition of motor performance at the beginning, middle, and end of a reaching movement
测量伸手动作开始、中间和结束时运动表现的有意识监控和元认知
  • 批准号:
    485984
  • 财政年份:
    2022
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Studentship Programs
Structural determinants and mechanisms underlying the Major Histocompatibility Complex Class II gene-linked resistance to autoimmune diabetes
主要组织相容性复合体 II 类基因相关的自身免疫性糖尿病抵抗的结构决定因素和机制
  • 批准号:
    461072
  • 财政年份:
    2022
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Operating Grants
Large deviation principle and metastability for lattice gas
晶格气体大偏差原理及亚稳态
  • 批准号:
    22K13929
  • 财政年份:
    2022
  • 资助金额:
    $ 8.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
  • 批准号:
    10614565
  • 财政年份:
    2022
  • 资助金额:
    $ 8.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了