The Neumann Problem for the Tangential Cauchy-Riemann Complex and the CR Embedding Problem
切向柯西-黎曼复形的诺伊曼问题和 CR 嵌入问题
基本信息
- 批准号:0406060
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
SupermanSProposal DMS-0406060PI: John M. Lee, University of WashingtonThe Neumann Problem for the Tangential Cauchy-Riemann Complex and the CREmbedding ProblemABSTRACTTechnical description of the project:The proposed research will study existence and regularity theorems for thenatural Neumann boundary problem for the tangential Cauchy-Riemann equationson smoothly bounded domains in CR manifolds. All known existence resultsfor this problem work only on domains with very special defining functions,namely those that depend only on the real and imaginary parts of a singleCR-holomorphic function. The key idea of this research is to use the factthat such a defining function provides a codimension-2 foliation (near theboundary but away from characteristic points) by compact CR-submanifolds.By using known estimates for the Kohn Laplacian on the compact leaves, onecan reduce the Neumann problem to a (generally non-coercive) ellipticboundary problem in a plane domain. These results are expected to haveapplications to such problems as the local CR embedding problem, localdeformations of CR structures, characterizing domains on which thetangential Cauchy-Riemann complex is solvable, regularity of maps between CRmanifolds, and the existence of local frames for CR vector bundles.Non-technical description:The geometry of complex manifolds (geometric objects in which complexnumbers instead of real numbers can be used as coordinates) has recentlybegun to play a surprisingly important role in both mathematics and physics.For example, in string theory, physicists postulate that the fundamentalparticles of matter are actually "quantum strings" that vibrate insidesub-microscopic complex manifolds called Calabi-Yau manifolds. Theprincipal analytic tool for studying complex manifolds is the Cauchy-Riemannequations, a system of partial differential equations that characterizes,among other things, those functions that have complex derivatives. When onestudies surfaces within complex manifolds (such as the "branes" that arisein string theory), the Cauchy-Riemann equations need to be replaced by amuch more complicated system called the "tangential Cauchy-Riemannequations," which we are just beginning to understand. This proposal willdevelop new techniques for studying some deep analytic questions surroundingthe solvability of the tangential Cauchy-Riemann equations, which areexpected to be of fundamental importance in understanding the geometry andanalysis of surfaces in complex manifolds.
项目技术描述:拟研究CR流形光滑有界区域上切向Cauchy-Riemann方程的自然Neumann边界问题的存在性定理和正则性定理。所有已知的存在性结果只适用于具有非常特殊定义函数的定义域,即只依赖于单个lecr全纯函数的实部和虚部的定义域。本研究的关键思想是利用这样一个定义函数通过紧化cr -子流形提供一个协维-2叶化(靠近边界但远离特征点)的事实。通过使用紧叶上已知的Kohn Laplacian估计,可以将Neumann问题简化为平面域上的椭圆边界问题(通常是非强制的)。这些结果有望应用于诸如局部CR嵌入问题、CR结构的局部变形、切向Cauchy-Riemann复可解的表征域、CR流形之间映射的正则性以及CR向量束的局部框架的存在性等问题。非技术描述:复数流形(用复数代替实数作为坐标的几何对象)的几何学最近开始在数学和物理学中发挥令人惊讶的重要作用。例如,在弦理论中,物理学家假设物质的基本粒子实际上是在称为Calabi-Yau流形的亚微观复杂流形中振动的“量子弦”。研究复流形的主要分析工具是柯西-黎曼方程,它是一个偏微分方程系统,除其他外,它描述了那些具有复导数的函数。当一个人研究复杂流形中的表面(比如弦理论中出现的“膜”)时,柯西-黎曼方程需要被更复杂的系统所取代,称为“切向柯西-黎曼方程”,我们才刚刚开始理解。这一建议将为研究围绕切向柯西-黎曼方程的可解性的一些深度解析问题开发新的技术,这些问题预计将对理解复杂流形中曲面的几何和分析具有根本的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lee其他文献
Flight demonstrations of micro‐actuator controlled delta wing
微执行器控制三角翼飞行演示
- DOI:
10.1108/00022661111159933 - 发表时间:
2011 - 期刊:
- 影响因子:1.5
- 作者:
John Lee;S. Newbern;Y. Tai;Chih;P. Huang - 通讯作者:
P. Huang
with monocytic differentiation Expression of c-fos, c-myb, and c-myc in human monocytes: correlation
具有单核细胞分化 人单核细胞中 c-fos、c-myb 和 c-myc 的表达:相关性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
John Lee;K. Mehta;M. Blick;J. Gutterman;G. Lopez - 通讯作者:
G. Lopez
Register-sensitive Translation : A Case Study of Mandarin and Cantonese Tak sumWong
语域敏感翻译:普通话和粤语德三黄的案例研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
John Lee - 通讯作者:
John Lee
The Synthesis of Compounds for the Chemotherapy of Tuberculosis. I. Heterocyclic Thiosemicarbazide Derivatives
用于结核病化疗的化合物的合成。
- DOI:
- 发表时间:
1951 - 期刊:
- 影响因子:0
- 作者:
T. Gardner;F. A. Smith;E. Wenis;John Lee - 通讯作者:
John Lee
Emergency Imaging of Pregnant Patient
孕妇的紧急影像学
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Donghoon Shin;John Lee;C. LeBedis - 通讯作者:
C. LeBedis
John Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lee', 18)}}的其他基金
CAREER: Unveiling the structure and stability of prenucleation clusters and their roles in crystallization pathway and final crystal structure
职业:揭示成核前团簇的结构和稳定性及其在结晶途径和最终晶体结构中的作用
- 批准号:
2338173 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Unveiling the structure and thermodynamic stability of pre-nucleation clusters and their role in multistep nucleation
RII Track-4:NSF:揭示预成核团簇的结构和热力学稳定性及其在多步成核中的作用
- 批准号:
2132131 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
FW-HTF: Collaborative Research: The Next Mobile Office: Safe and Productive Work in Automated Vehicles
FW-HTF:协作研究:下一个移动办公室:自动驾驶汽车中安全高效的工作
- 批准号:
1839484 - 财政年份:2018
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
CSR-EHCS(EHS), SM: Development of SYMBIOTE, A Reconfigurable Logic Assisted Data Stream Management System for Multimedia Sensor Networks
CSR-EHCS(EHS)、SM:SYMBIOTE 的开发,一种用于多媒体传感器网络的可重构逻辑辅助数据流管理系统
- 批准号:
0834682 - 财政年份:2008
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
CPA-CSA: Development of Parallel Reduced Run-Time Complexity Hardware-Oriented Deadlock Algorithms with Proofs and Extensions to Other Areas
CPA-CSA:开发并行降低运行时复杂性的面向硬件的死锁算法,并提供其他领域的证明和扩展
- 批准号:
0811448 - 财政年份:2008
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Coordinating Humans and Automation: Calibrating Trust in Automation Using Sonification
协调人类与自动化:使用可听化校准自动化中的信任
- 批准号:
0117494 - 财政年份:2001
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Acquisition of a Transmission Electron Microscope
购买透射电子显微镜
- 批准号:
9724268 - 财政年份:1997
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Upgrading the Optical Facilities of the Biology Department at the City College of the City University of New York
纽约城市大学城市学院生物系光学设施升级
- 批准号:
9317925 - 财政年份:1995
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
相似海外基金
Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
- 批准号:
2350242 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
- 批准号:
DE240100338 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Early Career Researcher Award
Hunting Dark Satellites Problem:ダークマターパラドクスの解明
寻找暗卫星问题:解开暗物质悖论
- 批准号:
24K07085 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
- 批准号:
2906479 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Studentship
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
- 批准号:
2336391 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
MCA: Problem-Based Learning for Warehousing and Order Fulfillment
MCA:基于问题的仓储和订单履行学习
- 批准号:
2322250 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
- 批准号:
EP/X033201/1 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Fellowship
Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
- 批准号:
EP/Y033078/1 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant