Nonlinear Problems of Elasticity for Multiphase Solids and Shells

多相固体和壳的非线性弹性问题

基本信息

  • 批准号:
    0406161
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-0406161PI: Timothy J HealeyInstitution: Cornell UniversityTitle: Nonlinear Problems of Elasticity for Multiphase Solids and ShellsABSTRACTT. Healey plans to study various problems from nonlinear elasticity, with applications to multi-phase, shape-memory solids and nonlinearly elastic shells - especially bio-membranes or bio-shells. For the first class of problems, coming from a field dominated by global-energy minimization techniques, the main goal of the work is provide new tools and results concerning meta-stable equilibria in the presence of loading and interfacial energy. For shell problems the main goal is to understand non-axisymmetric equilibria of nominally spherical shells, which has recently become an important question for lipid-bilayer membranes or "bio-shells", which are ubiquitous in molecular-biological structures. The nonlinear partial differential equations governing these models are essentially untouched - from the point of view of analysis. The proposed work is interdisciplinary and challenging, requiring tools and perspectives from several different fields, e.g., nonlinear analysis and partial differential equations, bifurcation theory, nonlinear continuum physics, computational methods, symmetry ideas, materials science and bio-physics.The proposed work will provide new mathematical models and predictive analysis for two seemingly different physical phenomena - phase transitions in shape-memory solids and in bio-membranes. Of course the detailed mathematical models for the two phenomena are distinct, but the overall approach and philosophy of the project is the same. As verified in experiments, there is a "perfect" or homogeneous state, which loses stability, after which more exotic patterns emerge. The goal of the work is to provide new mathematical tools to predict and understand the emergence and persistence of such phenomena from a quantitative point of view. The work has direct connections to technology: Shape-memory alloys are important in applications as "smart materials" and can potentially provide actuation capabilities on the micro scale; the deformability and mechanical behavior of bio-membranes is closely related to cell function, which is of central importance in biology.
提案:多相固体和壳的非线性弹性问题。希利计划研究非线性弹性的各种问题,并将其应用于多相,形状记忆固体和非线性弹性壳-特别是生物膜或生物壳。 对于第一类问题,来自一个领域占主导地位的全球能源最小化技术,工作的主要目标是提供新的工具和结果有关亚稳态平衡的存在下加载和界面能。 对于壳问题的主要目标是了解非轴对称平衡的名义球壳,最近已成为一个重要的问题,脂双层膜或“生物壳”,这是无处不在的分子生物结构。 从分析的角度来看,控制这些模型的非线性偏微分方程基本上是不变的。 拟议的工作是跨学科和具有挑战性的,需要来自几个不同领域的工具和观点,例如,非线性分析和偏微分方程、分叉理论、非线性连续介质物理、计算方法、对称性思想、材料科学和生物物理等,为形状记忆固体相变和生物膜相变这两种看似不同的物理现象提供新的数学模型和预测分析。 当然,这两种现象的详细数学模型是不同的,但该项目的总体方法和哲学是相同的。 正如实验所证实的那样,存在一种“完美”或均匀的状态,它失去了稳定性,之后出现了更多的奇异模式。 这项工作的目标是提供新的数学工具,从定量的角度来预测和理解这种现象的出现和持续。 这项工作与技术有着直接的联系:形状记忆合金在作为“智能材料”的应用中非常重要,并且可以潜在地提供微尺度上的驱动能力;生物膜的可变形性和机械行为与细胞功能密切相关,这在生物学中至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Healey其他文献

1687 PERMANENT LIGATION OF THE RIGHT COMMON CAROTID ARTERY AT BIRTH: 18 CASES
出生时右颈总动脉永久性结扎:18 例
  • DOI:
    10.1203/00006450-198504000-01711
  • 发表时间:
    1985-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Ira T Lott;Barbara H Towne;David M McPherson;Timothy Healey
  • 通讯作者:
    Timothy Healey

Timothy Healey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Healey', 18)}}的其他基金

Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
  • 批准号:
    2006586
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Problems for Highly Deformable Elastic Solids and Structures
高变形弹性固体和结构的非线性问题
  • 批准号:
    1613753
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Problems for Thin Elastic Structures
薄弹性结构的非线性问题
  • 批准号:
    1312377
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
  • 批准号:
    1007830
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
  • 批准号:
    0707715
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
  • 批准号:
    0072514
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Global Continuation Methods in Nonlinear Elasticity
非线性弹性中的全局延拓方法
  • 批准号:
    9704730
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
  • 批准号:
    9625830
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
  • 批准号:
    9407738
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
  • 批准号:
    9103254
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Seismology- and Geodesy-Based Inverse Problems Crossing Scales, with Scattering, Anisotropy and Nonlinear Elasticity
基于地震学和大地测量学的跨尺度反问题,具有散射、各向异性和非线性弹性
  • 批准号:
    1815143
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    1338869
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
  • 批准号:
    1007830
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    0846996
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
  • 批准号:
    0707715
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive finite element computations of nonlinear elasticity problems
非线性弹性问题的自适应有限元计算
  • 批准号:
    EP/D503035/1
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
  • 批准号:
    0072514
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Problems in Anisotropic Nonlinear Elasticity
各向异性非线性弹性问题
  • 批准号:
    9500642
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Variational Problems from Nonlinear Elasticity in Several Space Dimensions"
数学科学:“多维空间非线性弹性的变分问题”
  • 批准号:
    9112884
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Exterior Problems, Nonlinear Elasticity and Stochastic Evolution Problems
数学科学:外部问题、非线性弹性和随机演化问题
  • 批准号:
    9002562
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了