Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
基本信息
- 批准号:2006586
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on the mathematical prediction of mechanical behavior in highly deformable elastic structures and solids, including both soft elastic systems and brittle materials. Soft structures occur naturally in biological systems such as skin and bio-membranes and are also manufactured as thin films and elastomers. The prediction of their initial instability, such as wrinkling, and post-critical pattern formation under loading and/or growth play a prominent role in this part of the project. For brittle solids (such as ceramics or steels at low temperature), we will use a new approach to fracture, predicting the initiation and formation of cracks under incremental loading. Overall, the project aims to provide new classes of continuum-mechanical models and novel approaches to their analyses, leading to a quantitative understanding of the mechanical behavior of these systems. The work has a range of potential applications – from bio-molecular structures to engineering machines and structures. This project includes opportunities for the research training of graduate students. Classes of nonlinear models of elastic-surface structures, soft elastic solids, and brittle solids will be analyzed. The main goals of the work are: (i) To provide properly formulated mechanics-based models. (ii) To obtain rigorous mathematical results, viz., establish existence theorems – the only true way to “ensure that the mathematical description of a physical phenomenon is meaningful” (R. Courant). (iii) To detect new phenomena. Goals (i) and (ii) inform and enrich each other; goal (iii) is enabled by goals (i) and (ii). This research is highly interdisciplinary, requiring tools and perspectives from several fields, e.g., nonlinear continuum mechanics, elliptic PDE systems, bifurcation theory, calculus of variations, numerical methods, symmetry ideas and biophysics, while providing new links between them. The project will provide new results and insights pertaining to surface-creasing formation in soft elastic solids, fracture of brittle materials, post-critical growth in elastic solids and pattern formation in lipid-bilayer structures or bio-membranes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是在高度可变形的弹性结构和固体,包括软弹性系统和脆性材料的力学行为的数学预测。 软结构自然存在于生物系统中,例如皮肤和生物膜,并且也被制造为薄膜和弹性体。 它们的初始不稳定性的预测,例如在加载和/或增长下的扭曲和临界后的模式形成在该项目的这一部分中起着重要作用。 对于脆性固体(如低温下的陶瓷或钢),我们将使用一种新的断裂方法,预测增量载荷下裂纹的萌生和形成。 总的来说,该项目旨在提供新的连续力学模型和新的分析方法,从而定量了解这些系统的力学行为。 这项工作有一系列潜在的应用-从生物分子结构到工程机械和结构。 该项目包括研究生的研究培训机会。 将分析弹性表面结构、软弹性固体和脆性固体的非线性模型。 工作的主要目标是:(一)提供适当制定的力学模型。 (ii)为了得到严格的数学结果,即,建立存在定理--唯一真正的方法“确保对物理现象的数学描述是有意义的”(R。Courant)。 (iii)去发现新的现象。 目标(i)和(ii)相互启发和丰富;目标(iii)通过目标(i)和(ii)得以实现。 这项研究是高度跨学科的,需要来自多个领域的工具和观点,例如,非线性连续介质力学,椭圆偏微分方程系统,分叉理论,变分法,数值方法,对称性思想和生物物理学,同时提供它们之间的新联系。 该项目将提供有关软弹性固体表面折痕形成、脆性材料断裂、弹性固体临界后生长和脂质双层结构或生物膜图案形成的新成果和见解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nucleation and Development of Multiple Cracks in Thin Composite Fibers via the Inverse-Deformation Approach
通过反变形方法研究薄复合纤维中多重裂纹的成核和发展
- DOI:10.1007/s10659-023-10019-8
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Gupta, Arnav;Healey, Timothy J.
- 通讯作者:Healey, Timothy J.
The inverse-deformation approach to fracture
断裂的逆变形方法
- DOI:10.1016/j.jmps.2021.104352
- 发表时间:2021
- 期刊:
- 影响因子:5.3
- 作者:Rosakis, Phoebus;Healey, Timothy J.;Alyanak, Uğur
- 通讯作者:Alyanak, Uğur
Energy Minimizing Configurations for Single-Director Cosserat Shells
单导向器 Cosserat 壳的能量最小化配置
- DOI:10.1007/s10659-022-09975-4
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Healey, Timothy J.;Nair, Gokul G.
- 通讯作者:Nair, Gokul G.
Nucleation of creases and folds in hyperelastic solids is not a local bifurcation
- DOI:10.1016/j.jmps.2021.104749
- 发表时间:2022-01
- 期刊:
- 影响因子:5.3
- 作者:Shrinidhi S. Pandurangi;Andrew Akerson;R. Elliott;T. Healey;N. Triantafyllidis
- 通讯作者:Shrinidhi S. Pandurangi;Andrew Akerson;R. Elliott;T. Healey;N. Triantafyllidis
Existence of Weak Solutions for Non-Simple Elastic Surface Models
- DOI:10.1007/s10659-021-09840-w
- 发表时间:2020-08
- 期刊:
- 影响因子:2
- 作者:T. Healey
- 通讯作者:T. Healey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Healey其他文献
1687 PERMANENT LIGATION OF THE RIGHT COMMON CAROTID ARTERY AT BIRTH: 18 CASES
出生时右颈总动脉永久性结扎:18 例
- DOI:
10.1203/00006450-198504000-01711 - 发表时间:
1985-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Ira T Lott;Barbara H Towne;David M McPherson;Timothy Healey - 通讯作者:
Timothy Healey
Timothy Healey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Healey', 18)}}的其他基金
Nonlinear Problems for Highly Deformable Elastic Solids and Structures
高变形弹性固体和结构的非线性问题
- 批准号:
1613753 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Problems for Thin Elastic Structures
薄弹性结构的非线性问题
- 批准号:
1312377 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
- 批准号:
1007830 - 财政年份:2010
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
- 批准号:
0707715 - 财政年份:2007
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Problems of Elasticity for Multiphase Solids and Shells
多相固体和壳的非线性弹性问题
- 批准号:
0406161 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
- 批准号:
0072514 - 财政年份:2000
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Global Continuation Methods in Nonlinear Elasticity
非线性弹性中的全局延拓方法
- 批准号:
9704730 - 财政年份:1997
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
- 批准号:
9625830 - 财政年份:1996
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9407738 - 财政年份:1994
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9103254 - 财政年份:1991
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306992 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306991 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
- 批准号:
2212565 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
- 批准号:
2204240 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Mathematical Analysis, and Computation of Multiscale Systems
多尺度系统的建模、数学分析和计算
- 批准号:
DP200103097 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Discovery Projects
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Analysis, and Computation for Problems from Biology and Industry
生物学和工业问题的建模、分析和计算
- 批准号:
RGPIN-2016-05306 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Modeling, Analysis, and Computation of 2D Layered Materials
二维层状材料的建模、分析和计算
- 批准号:
1906129 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Modeling and Analysis of Neural Codes for Spatial Computation
空间计算神经代码的建模和分析
- 批准号:
2104586 - 财政年份:2018
- 资助金额:
$ 32万 - 项目类别:
Studentship