Nonlinear Problems for Highly Deformable Elastic Solids and Structures

高变形弹性固体和结构的非线性问题

基本信息

  • 批准号:
    1613753
  • 负责人:
  • 金额:
    $ 36.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

This research project concerns the modeling, analysis, and numerical exploration of deformations of mechanical and biomechanical systems, in particular highly deformable thin-surface structures and solids. These occur naturally in bio-molecular systems and also in man-made thin films and elastomers. Lipid-bilayer membranes are ubiquitous in bio-molecular systems, and the accurate modeling and prediction of their mechanical response under external stimuli is crucial for understanding the behavior of cell function and also that of liposomes, the latter of which can be used as vehicles for nutrient and drug delivery. Likewise, a fundamental understanding of the nonlinear response of highly deformable structures and materials is important, for example, in the design of sensors as well as for many other engineering applications. The research aims to provide new classes of continuum-mechanical models and novel approaches to their mathematical analysis, leading to a quantitative understanding of the behavior of such systems.This project centers on the modeling, computation, and analysis of highly deformable, thin elastic structures and solids. In particular, classes of problems for incompressible solids, thin elastic surfaces, two-phase lipid-bilayer vesicles, and generalized rod models will be addressed. The main goals of the work are: (i) to provide new classes of continuum-mechanics-based models, (ii) to systematically find global equilibria as loading and other parameters vary and assess their stability (local energy minima), and (iii) to identify new phenomena. Goal (ii) entails rigorous existence results as well as systematic numerical computation. In particular, the former will entail addressing new questions in both partial differential equations and the calculus of variations. Goals (i) and (ii) inform and enrich the other; goal (iii) is enabled by goals (i) and (ii). The proposed work is highly interdisciplinary, requiring tools and perspectives from several fields, including nonlinear continuum mechanics, biophysics, materials science, nonlinear elliptic partial differential equations, bifurcation theory, calculus of variations, numerical methods, and symmetry ideas.
该研究项目涉及机械和生物力学系统变形的建模,分析和数值探索,特别是高度可变形的薄表面结构和固体。这些天然存在于生物分子系统中,也存在于人造薄膜和弹性体中。脂质双层膜是生物分子系统中普遍存在的,并且其在外部刺激下的机械响应的准确建模和预测对于理解细胞功能的行为以及脂质体的行为是至关重要的,脂质体可以用作营养和药物递送的载体。同样,对高度可变形结构和材料的非线性响应的基本理解也很重要,例如,在传感器设计以及许多其他工程应用中。该研究旨在提供新的连续力学模型和新的数学分析方法,从而定量地了解此类系统的行为。该项目的重点是高度可变形的薄弹性结构和固体的建模,计算和分析。特别是,类的问题,不可压缩的固体,薄弹性表面,两相脂质双层囊泡,广义棒模型将得到解决。工作的主要目标是:(一)提供新的类连续力学为基础的模型,(二)系统地找到全球平衡的负载和其他参数的变化,并评估其稳定性(局部能量最小值),和(三)确定新的现象。目标(ii)需要严格的存在结果以及系统的数值计算。特别是,前者将需要解决偏微分方程和变分法的新问题。目标(i)和(ii)为对方提供信息和丰富对方;目标(iii)由目标(i)和(ii)促成。拟议的工作是高度跨学科的,需要从几个领域的工具和观点,包括非线性连续介质力学,生物物理学,材料科学,非线性椭圆型偏微分方程,分叉理论,变分法,数值方法和对称思想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Healey其他文献

1687 PERMANENT LIGATION OF THE RIGHT COMMON CAROTID ARTERY AT BIRTH: 18 CASES
出生时右颈总动脉永久性结扎:18 例
  • DOI:
    10.1203/00006450-198504000-01711
  • 发表时间:
    1985-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Ira T Lott;Barbara H Towne;David M McPherson;Timothy Healey
  • 通讯作者:
    Timothy Healey

Timothy Healey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Healey', 18)}}的其他基金

Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
  • 批准号:
    2006586
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Nonlinear Problems for Thin Elastic Structures
薄弹性结构的非线性问题
  • 批准号:
    1312377
  • 财政年份:
    2013
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
  • 批准号:
    1007830
  • 财政年份:
    2010
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
  • 批准号:
    0707715
  • 财政年份:
    2007
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Nonlinear Problems of Elasticity for Multiphase Solids and Shells
多相固体和壳的非线性弹性问题
  • 批准号:
    0406161
  • 财政年份:
    2004
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
  • 批准号:
    0072514
  • 财政年份:
    2000
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
Global Continuation Methods in Nonlinear Elasticity
非线性弹性中的全局延拓方法
  • 批准号:
    9704730
  • 财政年份:
    1997
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
  • 批准号:
    9625830
  • 财政年份:
    1996
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
  • 批准号:
    9407738
  • 财政年份:
    1994
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
  • 批准号:
    9103254
  • 财政年份:
    1991
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Quantum optimisation for highly constrained problems in customer data science
针对客户数据科学中高度受限问题的量子优化
  • 批准号:
    2608447
  • 财政年份:
    2021
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Studentship
The development of a dynamic analytics software platform, which explains the key core dependencies of the vast multifaceted metrology problems within volume manufacturing through a highly visual interactive interface
动态分析软件平台的开发,通过高度可视化的交互界面解释了批量制造中大量多方面计量问题的关键核心依赖关系
  • 批准号:
    104049
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Collaborative R&D
Highly nonlinear evolutionary problems
高度非线性进化问题
  • 批准号:
    396311282
  • 财政年份:
    2017
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Research Fellowships
Would more highly-qualified teachers and trainers help to address quality problems in the Australian vocational education and training system?
更多高素质教师和培训师是否有助于解决澳大利亚职业教育培训体系的质量问题?
  • 批准号:
    LP140100044
  • 财政年份:
    2015
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Linkage Projects
Highly Scalable Algorithms and Solvers for Eigen-Problems: Unconstrained Optimization and Multiple Power Iterations
用于特征问题的高度可扩展的算法和求解器:无约束优化和多次幂迭代
  • 批准号:
    1418724
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Production of mesoporous fullerene (C60) with highly crystalline framework to deal with environment and energy problems
生产具有高度结晶骨架的介孔富勒烯(C60)以应对环境和能源问题
  • 批准号:
    25790021
  • 财政年份:
    2013
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A coupled finite volume method for viscoelastic flow problems on highly-skewed unstructured meshes: a computational rheology revolution
用于解决高度倾斜非结构化网格上粘弹性流动问题的耦合有限体积方法:计算流变学革命
  • 批准号:
    DP120103045
  • 财政年份:
    2012
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Discovery Projects
Development of highly accurate algorithms for semidefinite programming problems
开发半定规划问题的高精度算法
  • 批准号:
    22740056
  • 财政年份:
    2010
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On the Study of Highly Reliable Symbolic-Numeric Computation for Algebraic Problems with Empirical Data
经验数据代数问题高可靠符号数值计算的研究
  • 批准号:
    21500026
  • 财政年份:
    2009
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A STUDY ON PARTITION PROBLEMS IN HIGHLY CONNECTED GRAPHS AND FORBIDDEN SUBGRAPHS
高度连通图和禁子图的划分问题研究
  • 批准号:
    20740068
  • 财政年份:
    2009
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了