Global Continuation Methods in Nonlinear Elasticity
非线性弹性中的全局延拓方法
基本信息
- 批准号:9704730
- 负责人:
- 金额:$ 9.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704730 Healey We plan to carry out research in global nonlinear analysis of partial differential equations of nonlinear elastostatics. A major thrust of the proposed work will be focused on applications of a new general existence tool developed recented by Simpson & myself (from past partial NSF support), viz., a generalization of the Leray-Schauder degree for global continuation and bifurcation. In the context a concrete problems, we seek a-prior bounds, symmetry/positivity properties, etc., all with a view toward obtaining meaningful constitutive restrictions for entire classes of materials. Our study will include both traditional (strongly elliptic) problems and those involving phase change (loss of ellipticity). For the latter, a new approach based upon higher-gradient regularization, global continuation and singular limits is being proposed. The analysis of such models at a very general level is fundamental to the understanding of traditional engineering materials/structures and martensitic transformations and shape-memory effects, which are observed in many advanced engineering alloys. The work has two major goals: (i) To obtain new qualitative results and detect new phenomena - of both mathematical and physical significance; (ii) To obtain new global-continuation (existence) results in problems of 2 and 3-dimensional elasticity - including problems involving phase transformations. Broadly speaking,the proposed work will provide important mathematical underpinnings to difficult nonlinear problems arising in traditional engineering fields like structural & mechanical engineering and also in more modern areas like materials science. The work has the potential to: (i) deliver new mathematical tools for the analysis of difficult problems of engineering practice,leading ultimately to safer and more optimal design of structures; (ii) lead to a better understanding of the nonlinear material behavior of certain engineering alloys, with potential application s to manufacturing engineering and the design of non-passive or "smart" structures.
小行星9704730 我们计划开展非线性弹性静力学偏微分方程的整体非线性分析研究。 拟议工作的一个主要重点将集中在辛普森本人最近开发的一种新的通用存在工具的应用上(来自过去的部分NSF支持),即,推广了Leray-Schauder度的全局延拓和分支。 在具体问题的上下文中,我们寻求先验界,对称性/正性等,所有这些都是为了获得对整个材料类别的有意义的本构限制。 我们的研究将包括传统的(强椭圆)问题和那些涉及相变(椭圆度损失)。 对于后者,提出了一种基于高梯度正则化、全局延拓和奇异极限的新方法。 在一个非常普遍的水平上分析这样的模型是理解传统的工程材料/结构和马氏体相变和形状记忆效应的基础,这在许多先进的工程合金中观察到。这项工作有两个主要目标:(一)获得新的定性结果,并检测新的现象-数学和物理意义;(二)获得新的全球连续(存在)的结果问题的2和3维弹性-包括问题涉及相变。 从广义上讲,拟议的工作将提供重要的数学基础,以困难的非线性问题,在传统的工程领域,如结构机械工程,也在更现代的领域,如材料科学。这项工作有可能:(i)提供新的数学工具,用于分析工程实践中的困难问题,最终导致更安全和更优化的结构设计;(ii)导致更好地理解某些工程合金的非线性材料行为,并有可能应用于制造工程和非被动或“智能”结构的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Healey其他文献
1687 PERMANENT LIGATION OF THE RIGHT COMMON CAROTID ARTERY AT BIRTH: 18 CASES
出生时右颈总动脉永久性结扎:18 例
- DOI:
10.1203/00006450-198504000-01711 - 发表时间:
1985-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Ira T Lott;Barbara H Towne;David M McPherson;Timothy Healey - 通讯作者:
Timothy Healey
Timothy Healey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Healey', 18)}}的其他基金
Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
- 批准号:
2006586 - 财政年份:2020
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Nonlinear Problems for Highly Deformable Elastic Solids and Structures
高变形弹性固体和结构的非线性问题
- 批准号:
1613753 - 财政年份:2016
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Nonlinear Problems for Thin Elastic Structures
薄弹性结构的非线性问题
- 批准号:
1312377 - 财政年份:2013
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
- 批准号:
1007830 - 财政年份:2010
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
- 批准号:
0707715 - 财政年份:2007
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Nonlinear Problems of Elasticity for Multiphase Solids and Shells
多相固体和壳的非线性弹性问题
- 批准号:
0406161 - 财政年份:2004
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
- 批准号:
0072514 - 财政年份:2000
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
- 批准号:
9625830 - 财政年份:1996
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9407738 - 财政年份:1994
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9103254 - 财政年份:1991
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
相似海外基金
ESRC Capital Funding: Social Data Science Lab - Continuation of Methods and Infrastructure Development for Open Data Analytics in Social Research
ESRC 资本资助:社会数据科学实验室 - 社会研究中开放数据分析方法和基础设施开发的延续
- 批准号:
ES/P008755/1 - 财政年份:2017
- 资助金额:
$ 9.3万 - 项目类别:
Research Grant
Unique continuation problems and complex phase methods in the theory of partial differential equations
偏微分方程理论中独特的连续问题和复杂的相位方法
- 批准号:
22540185 - 财政年份:2010
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Optimization and continuation methods in fluid mechanics
职业:流体力学的优化和延续方法
- 批准号:
0955078 - 财政年份:2010
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Polyhedral Homotopy Continuation Methods for Computing All Real and Complex Solutions of Systems of Polynomial Equations
计算多项式方程组全实数和复数解的多面体同伦延拓方法
- 批准号:
13650444 - 财政年份:2001
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Waves and Continuation Methods in Biology and Related Areas
生物学及相关领域的波和延拓方法会议
- 批准号:
9801227 - 财政年份:1998
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
- 批准号:
9625830 - 财政年份:1996
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Development of Continuation Methods for Circuit Simulation at Bell Laboratories
贝尔实验室电路仿真延续方法的开发
- 批准号:
9412779 - 财政年份:1994
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Dimensional Continuation Methods for the Treatment of Electron Correlation
处理电子相关性的维度连续方法
- 批准号:
9007620 - 财政年份:1990
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Continuation Methods for the Nonlinear Complementarity and Variational Inequality Problems in Finite Dimensions
有限维非线性互补和变分不等式问题的连续方法
- 批准号:
8717968 - 财政年份:1988
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
Research Initiation: Continuation Methods Applied to Singu-lar Perturbation Designs and the Investigation of a Freq- uency Domain Strategy
研究启动:应用于奇异扰动设计的连续方法和频域策略的研究
- 批准号:
8404323 - 财政年份:1984
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant