Classification problems in foliation theory
叶状结构理论中的分类问题
基本信息
- 批准号:0406254
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-12-01 至 2008-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A foliation F of a manifold M is a regular decomposition of the space into connected submanifolds, usually with some assumptions that the decomposition is smooth, and the decomposition is uniform -- either there are no singular strata, or the singular strata themselves have a foliated structure. The breadth of the study of foliations includes all dynamical systems, an immensely broad topic in itself, so truly classifying all foliations is quite impossible. The goal of this project is to investigate three approaches to classification: 1) classify foliations via categorical (in the sense of Lusternik and Schnirelmann) decompositions and other "foliated cell" structures; 2) classify foliations up to homotopy of their transverse Haefliger structure; 3) classify foliations in terms of the ergodic theory and asymptotic properties of their leaves. The PI's study of the relations between the second and third of these topics -- dynamical systems and ergodic theory, and geometric and topological invariants of group actions and foliations -- has been ongoing for more than 20 years with support of the NSF, and resulted in many publications and advances in the field. In the past three years, there have been further decisive advances in each topic. The study of Lusternik and Schnirelmann category of foliations, and its related ideas, is a very new field, with great potential for advances. The fundamental connections between LS category theory and Morse theory, motivate the study of the connections between their foliated versions, and the classification of transverse Haefliger structures. Success with this part of the proposed research would result in truly fundamental new understanding of the structure of foliations.The study of foliations of manifolds began as a subject approximately fifty years ago. The concept arises very naturally in many geometric and topological problems, so it is not surprising that understanding properties of foliations has become a fundamental aspect of the study of many other subjects in geometry, topology, dynamical systems, analysis and various areas of applied and theoretical physics. The intellectual merit of the proposed activity includes advancing our understanding of the structure of foliations, and developing new techniques with broad applications in many fields. Success with this research project will not just be measured by solving the proposed problems, but also in opening the field up with new questions. The broader impact resulting from the proposed activity includes enhanced training of undergraduate and graduate students in mathematics, collaborative research projects with postdoctoral investigators, and international collaborations promoting research in mathematics. The PI intends to continue working with graduate students and postdocs on projects related to this proposal, and to promote the field via conference talks and via the internet.
流形M的叶层F是空间到连通子流形的正则分解,通常假设分解是光滑的,并且分解是一致的--或者没有奇异层,或者奇异层本身具有叶状结构。叶理研究的广度包括所有动力系统,这本身就是一个非常宽泛的主题,因此真正对所有叶理进行分类是非常不可能的。这个项目的目标是研究三种分类方法:1)通过分类(在Lusternik和Schnirelmann意义下)分解和其他“叶状细胞”结构对叶理进行分类;2)将叶理分类到其横向Haefliger结构的同伦;3)根据叶的遍历理论和叶的渐近性质对叶理进行分类。在NSF的支持下,PI对其中第二和第三个主题--动力系统和遍历理论,以及群行动和叶的几何和拓扑不变量--之间的关系的研究已经进行了20多年,并在该领域产生了许多出版物和进展。在过去的三年里,每个主题都取得了进一步的决定性进展。叶理的Lusternik和Schnirelmann范畴及其相关概念的研究是一个非常新的领域,具有巨大的发展潜力。最小二乘范畴理论和莫尔斯理论之间的基本联系促使人们研究它们的分叶版本之间的联系,并对横向Haefliger结构进行分类。这部分拟议研究的成功将带来对叶理结构的真正根本的新理解。流形叶理的研究大约在50年前作为一门学科开始。这个概念在许多几何和拓扑问题中非常自然地出现,因此,理解叶状结构的性质已经成为几何、拓扑、动力系统、分析以及应用和理论物理的各个领域中许多其他学科研究的基本方面也就不足为奇了。拟议活动的智力价值包括增进我们对叶理结构的理解,以及开发在许多领域具有广泛应用的新技术。这一研究项目的成功将不仅仅通过解决提出的问题来衡量,还将以新问题打开领域的大门。拟议活动产生的更广泛影响包括加强对本科生和研究生的数学培训,与博士后研究人员合作开展研究项目,以及促进数学研究的国际合作。国际和平研究所打算继续与研究生和博士后合作,开展与该提案相关的项目,并通过会议讨论和互联网宣传这一领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Hurder其他文献
Category and compact leaves
- DOI:
10.1016/j.topol.2005.08.006 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:
- 作者:
Steven Hurder - 通讯作者:
Steven Hurder
Steven Hurder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Hurder', 18)}}的其他基金
Mathematical Sciences: Asymptotic Topology, Analysis and Dynamics of Spaces and Foliations
数学科学:空间和叶状结构的渐近拓扑、分析和动力学
- 批准号:
9704768 - 财政年份:1997
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Differential Topology and Dynamics ofGroup Actions and Foliations
数学科学:微分拓扑以及群作用和叶状结构的动力学
- 批准号:
9401688 - 财政年份:1994
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology, Geometry and Analysis of Group Actions and Foliations
数学科学:拓扑、几何以及群作用和叶状结构的分析
- 批准号:
9103297 - 财政年份:1991
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology, Analysis and Ergodic Theoryof Foliations
数学科学:叶状结构的拓扑、分析和遍历理论
- 批准号:
8902960 - 财政年份:1989
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Analysis to Geometry
数学科学:分析在几何中的应用
- 批准号:
8711878 - 财政年份:1987
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Differential Topology and Ergodic Theory of Foliations
数学科学:微分拓扑和叶状遍历理论
- 批准号:
8601976 - 财政年份:1986
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Differential Topology and Ergodic Theory of Foliations
数学科学:微分拓扑和叶状遍历理论
- 批准号:
8404128 - 财政年份:1984
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant